Linear Algebra Examples

Find the Adjoint [[4,0,-2],[2,3,4],[5,-7,6]]
[40-22345-76]402234576
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]+++++
Step 2
Use the sign chart and the given matrix to find the cofactor of each element.
Tap for more steps...
Step 2.1
Calculate the minor for element a11a11.
Tap for more steps...
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|34-76|3476
Step 2.1.2
Evaluate the determinant.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a11=36-(-74)a11=36(74)
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply 33 by 66.
a11=18-(-74)a11=18(74)
Step 2.1.2.2.1.2
Multiply -(-74)(74).
Tap for more steps...
Step 2.1.2.2.1.2.1
Multiply -77 by 44.
a11=18--28a11=1828
Step 2.1.2.2.1.2.2
Multiply -11 by -2828.
a11=18+28a11=18+28
a11=18+28a11=18+28
a11=18+28a11=18+28
Step 2.1.2.2.2
Add 1818 and 2828.
a11=46a11=46
a11=46a11=46
a11=46a11=46
a11=46a11=46
Step 2.2
Calculate the minor for element a12a12.
Tap for more steps...
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2456|2456
Step 2.2.2
Evaluate the determinant.
Tap for more steps...
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a12=26-54a12=2654
Step 2.2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.2.1.1
Multiply 22 by 66.
a12=12-54a12=1254
Step 2.2.2.2.1.2
Multiply -55 by 44.
a12=12-20a12=1220
a12=12-20a12=1220
Step 2.2.2.2.2
Subtract 2020 from 1212.
a12=-8a12=8
a12=-8a12=8
a12=-8a12=8
a12=-8a12=8
Step 2.3
Calculate the minor for element a13a13.
Tap for more steps...
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|235-7|2357
Step 2.3.2
Evaluate the determinant.
Tap for more steps...
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a13=2-7-53a13=2753
Step 2.3.2.2
Simplify the determinant.
Tap for more steps...
Step 2.3.2.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.1.1
Multiply 22 by -77.
a13=-14-53a13=1453
Step 2.3.2.2.1.2
Multiply -55 by 33.
a13=-14-15a13=1415
a13=-14-15a13=1415
Step 2.3.2.2.2
Subtract 1515 from -1414.
a13=-29a13=29
a13=-29a13=29
a13=-29a13=29
a13=-29a13=29
Step 2.4
Calculate the minor for element a21a21.
Tap for more steps...
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|0-2-76|0276
Step 2.4.2
Evaluate the determinant.
Tap for more steps...
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a21=06-(-7-2)a21=06(72)
Step 2.4.2.2
Simplify the determinant.
Tap for more steps...
Step 2.4.2.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.2.1.1
Multiply 00 by 66.
a21=0-(-7-2)a21=0(72)
Step 2.4.2.2.1.2
Multiply -(-7-2)(72).
Tap for more steps...
Step 2.4.2.2.1.2.1
Multiply -77 by -22.
a21=0-114a21=0114
Step 2.4.2.2.1.2.2
Multiply -11 by 1414.
a21=0-14a21=014
a21=0-14a21=014
a21=0-14a21=014
Step 2.4.2.2.2
Subtract 1414 from 00.
a21=-14a21=14
a21=-14a21=14
a21=-14a21=14
a21=-14a21=14
Step 2.5
Calculate the minor for element a22a22.
Tap for more steps...
Step 2.5.1
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|4-256|4256
Step 2.5.2
Evaluate the determinant.
Tap for more steps...
Step 2.5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a22=46-5-2a22=4652
Step 2.5.2.2
Simplify the determinant.
Tap for more steps...
Step 2.5.2.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.2.1.1
Multiply 44 by 66.
a22=24-5-2a22=2452
Step 2.5.2.2.1.2
Multiply -55 by -22.
a22=24+10a22=24+10
a22=24+10a22=24+10
Step 2.5.2.2.2
Add 2424 and 1010.
a22=34a22=34
a22=34a22=34
a22=34a22=34
a22=34a22=34
Step 2.6
Calculate the minor for element a23a23.
Tap for more steps...
Step 2.6.1
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|405-7|4057
Step 2.6.2
Evaluate the determinant.
Tap for more steps...
Step 2.6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a23=4-7-50a23=4750
Step 2.6.2.2
Simplify the determinant.
Tap for more steps...
Step 2.6.2.2.1
Simplify each term.
Tap for more steps...
Step 2.6.2.2.1.1
Multiply 44 by -77.
a23=-28-50a23=2850
Step 2.6.2.2.1.2
Multiply -55 by 00.
a23=-28+0a23=28+0
a23=-28+0a23=28+0
Step 2.6.2.2.2
Add -2828 and 00.
a23=-28a23=28
a23=-28a23=28
a23=-28a23=28
a23=-28a23=28
Step 2.7
Calculate the minor for element a31a31.
Tap for more steps...
Step 2.7.1
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|0-234|0234
Step 2.7.2
Evaluate the determinant.
Tap for more steps...
Step 2.7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a31=04-3-2a31=0432
Step 2.7.2.2
Simplify the determinant.
Tap for more steps...
Step 2.7.2.2.1
Simplify each term.
Tap for more steps...
Step 2.7.2.2.1.1
Multiply 00 by 44.
a31=0-3-2a31=032
Step 2.7.2.2.1.2
Multiply -33 by -22.
a31=0+6a31=0+6
a31=0+6a31=0+6
Step 2.7.2.2.2
Add 00 and 66.
a31=6a31=6
a31=6a31=6
a31=6a31=6
a31=6a31=6
Step 2.8
Calculate the minor for element a32a32.
Tap for more steps...
Step 2.8.1
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|4-224|4224
Step 2.8.2
Evaluate the determinant.
Tap for more steps...
Step 2.8.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a32=44-2-2a32=4422
Step 2.8.2.2
Simplify the determinant.
Tap for more steps...
Step 2.8.2.2.1
Simplify each term.
Tap for more steps...
Step 2.8.2.2.1.1
Multiply 44 by 44.
a32=16-2-2a32=1622
Step 2.8.2.2.1.2
Multiply -22 by -22.
a32=16+4a32=16+4
a32=16+4a32=16+4
Step 2.8.2.2.2
Add 1616 and 44.
a32=20a32=20
a32=20a32=20
a32=20a32=20
a32=20a32=20
Step 2.9
Calculate the minor for element a33a33.
Tap for more steps...
Step 2.9.1
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|4023|4023
Step 2.9.2
Evaluate the determinant.
Tap for more steps...
Step 2.9.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a33=43-20a33=4320
Step 2.9.2.2
Simplify the determinant.
Tap for more steps...
Step 2.9.2.2.1
Simplify each term.
Tap for more steps...
Step 2.9.2.2.1.1
Multiply 44 by 33.
a33=12-20a33=1220
Step 2.9.2.2.1.2
Multiply -22 by 00.
a33=12+0a33=12+0
a33=12+0a33=12+0
Step 2.9.2.2.2
Add 1212 and 00.
a33=12a33=12
a33=12a33=12
a33=12a33=12
a33=12a33=12
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[468-291434286-2012]4682914342862012
[468-291434286-2012]4682914342862012
Step 3
Transpose the matrix by switching its rows to columns.
[46146834-20-292812]4614683420292812
 [x2  12  π  xdx ]  x2  12  π  xdx