Enter a problem...
Linear Algebra Examples
[40-22345-76]⎡⎢⎣40−22345−76⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element a11a11.
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|34-76|∣∣∣34−76∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a11=3⋅6-(-7⋅4)a11=3⋅6−(−7⋅4)
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 33 by 66.
a11=18-(-7⋅4)a11=18−(−7⋅4)
Step 2.1.2.2.1.2
Multiply -(-7⋅4)−(−7⋅4).
Step 2.1.2.2.1.2.1
Multiply -7−7 by 44.
a11=18--28a11=18−−28
Step 2.1.2.2.1.2.2
Multiply -1−1 by -28−28.
a11=18+28a11=18+28
a11=18+28a11=18+28
a11=18+28a11=18+28
Step 2.1.2.2.2
Add 1818 and 2828.
a11=46a11=46
a11=46a11=46
a11=46a11=46
a11=46a11=46
Step 2.2
Calculate the minor for element a12a12.
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2456|∣∣∣2456∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a12=2⋅6-5⋅4a12=2⋅6−5⋅4
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 22 by 66.
a12=12-5⋅4a12=12−5⋅4
Step 2.2.2.2.1.2
Multiply -5−5 by 44.
a12=12-20a12=12−20
a12=12-20a12=12−20
Step 2.2.2.2.2
Subtract 2020 from 1212.
a12=-8a12=−8
a12=-8a12=−8
a12=-8a12=−8
a12=-8a12=−8
Step 2.3
Calculate the minor for element a13a13.
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|235-7|∣∣∣235−7∣∣∣
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a13=2⋅-7-5⋅3a13=2⋅−7−5⋅3
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 22 by -7−7.
a13=-14-5⋅3a13=−14−5⋅3
Step 2.3.2.2.1.2
Multiply -5−5 by 33.
a13=-14-15a13=−14−15
a13=-14-15a13=−14−15
Step 2.3.2.2.2
Subtract 1515 from -14−14.
a13=-29a13=−29
a13=-29a13=−29
a13=-29a13=−29
a13=-29a13=−29
Step 2.4
Calculate the minor for element a21a21.
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|0-2-76|∣∣∣0−2−76∣∣∣
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a21=0⋅6-(-7⋅-2)a21=0⋅6−(−7⋅−2)
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 00 by 66.
a21=0-(-7⋅-2)a21=0−(−7⋅−2)
Step 2.4.2.2.1.2
Multiply -(-7⋅-2)−(−7⋅−2).
Step 2.4.2.2.1.2.1
Multiply -7−7 by -2−2.
a21=0-1⋅14a21=0−1⋅14
Step 2.4.2.2.1.2.2
Multiply -1−1 by 1414.
a21=0-14a21=0−14
a21=0-14a21=0−14
a21=0-14a21=0−14
Step 2.4.2.2.2
Subtract 1414 from 00.
a21=-14a21=−14
a21=-14a21=−14
a21=-14a21=−14
a21=-14a21=−14
Step 2.5
Calculate the minor for element a22a22.
Step 2.5.1
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|4-256|∣∣∣4−256∣∣∣
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a22=4⋅6-5⋅-2a22=4⋅6−5⋅−2
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 44 by 66.
a22=24-5⋅-2a22=24−5⋅−2
Step 2.5.2.2.1.2
Multiply -5−5 by -2−2.
a22=24+10a22=24+10
a22=24+10a22=24+10
Step 2.5.2.2.2
Add 2424 and 1010.
a22=34a22=34
a22=34a22=34
a22=34a22=34
a22=34a22=34
Step 2.6
Calculate the minor for element a23a23.
Step 2.6.1
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|405-7|∣∣∣405−7∣∣∣
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a23=4⋅-7-5⋅0a23=4⋅−7−5⋅0
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply 44 by -7−7.
a23=-28-5⋅0a23=−28−5⋅0
Step 2.6.2.2.1.2
Multiply -5−5 by 00.
a23=-28+0a23=−28+0
a23=-28+0a23=−28+0
Step 2.6.2.2.2
Add -28−28 and 00.
a23=-28a23=−28
a23=-28a23=−28
a23=-28a23=−28
a23=-28a23=−28
Step 2.7
Calculate the minor for element a31a31.
Step 2.7.1
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|0-234|∣∣∣0−234∣∣∣
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a31=0⋅4-3⋅-2a31=0⋅4−3⋅−2
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 00 by 44.
a31=0-3⋅-2a31=0−3⋅−2
Step 2.7.2.2.1.2
Multiply -3−3 by -2−2.
a31=0+6a31=0+6
a31=0+6a31=0+6
Step 2.7.2.2.2
Add 00 and 66.
a31=6a31=6
a31=6a31=6
a31=6a31=6
a31=6a31=6
Step 2.8
Calculate the minor for element a32a32.
Step 2.8.1
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|4-224|∣∣∣4−224∣∣∣
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a32=4⋅4-2⋅-2a32=4⋅4−2⋅−2
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 44 by 44.
a32=16-2⋅-2a32=16−2⋅−2
Step 2.8.2.2.1.2
Multiply -2−2 by -2−2.
a32=16+4a32=16+4
a32=16+4a32=16+4
Step 2.8.2.2.2
Add 1616 and 44.
a32=20a32=20
a32=20a32=20
a32=20a32=20
a32=20a32=20
Step 2.9
Calculate the minor for element a33a33.
Step 2.9.1
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|4023|∣∣∣4023∣∣∣
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a33=4⋅3-2⋅0a33=4⋅3−2⋅0
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 44 by 33.
a33=12-2⋅0a33=12−2⋅0
Step 2.9.2.2.1.2
Multiply -2−2 by 00.
a33=12+0a33=12+0
a33=12+0a33=12+0
Step 2.9.2.2.2
Add 1212 and 00.
a33=12a33=12
a33=12a33=12
a33=12a33=12
a33=12a33=12
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the -− positions on the sign chart.
[468-291434286-2012]⎡⎢⎣468−291434286−2012⎤⎥⎦
[468-291434286-2012]⎡⎢⎣468−291434286−2012⎤⎥⎦
Step 3
Transpose the matrix by switching its rows to columns.
[46146834-20-292812]⎡⎢⎣46146834−20−292812⎤⎥⎦