Enter a problem...
Linear Algebra Examples
87√xy6
Step 1
Multiply 87√xy6 by 7√xy667√xy66.
87√xy6⋅7√xy667√xy66
Step 2
Step 2.1
Multiply 87√xy6 by 7√xy667√xy66.
87√xy667√xy67√xy66
Step 2.2
Raise 7√xy6 to the power of 1.
87√xy667√xy617√xy66
Step 2.3
Use the power rule aman=am+n to combine exponents.
87√xy667√xy61+6
Step 2.4
Add 1 and 6.
87√xy667√xy67
Step 2.5
Rewrite 7√xy67 as xy6.
Step 2.5.1
Use n√ax=axn to rewrite 7√xy6 as (xy6)17.
87√xy66((xy6)17)7
Step 2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
87√xy66(xy6)17⋅7
Step 2.5.3
Combine 17 and 7.
87√xy66(xy6)77
Step 2.5.4
Cancel the common factor of 7.
Step 2.5.4.1
Cancel the common factor.
87√xy66(xy6)77
Step 2.5.4.2
Rewrite the expression.
87√xy66(xy6)1
87√xy66(xy6)1
Step 2.5.5
Simplify.
87√xy66xy6
87√xy66xy6
87√xy66xy6
Step 3
Step 3.1
Rewrite 7√xy66 as 7√(xy6)6.
87√(xy6)6xy6
Step 3.2
Apply the product rule to xy6.
87√x6(y6)6xy6
Step 3.3
Multiply the exponents in (y6)6.
Step 3.3.1
Apply the power rule and multiply exponents, (am)n=amn.
87√x6y6⋅6xy6
Step 3.3.2
Multiply 6 by 6.
87√x6y36xy6
87√x6y36xy6
Step 3.4
Rewrite x6y36 as (y5)7(x6y).
Step 3.4.1
Factor out y35.
87√x6(y35y)xy6
Step 3.4.2
Rewrite y35 as (y5)7.
87√x6((y5)7y)xy6
Step 3.4.3
Reorder x6 and (y5)7.
87√(y5)7x6yxy6
Step 3.4.4
Add parentheses.
87√(y5)7(x6y)xy6
87√(y5)7(x6y)xy6
Step 3.5
Pull terms out from under the radical.
8y57√x6yxy6
8y57√x6yxy6
Step 4
Step 4.1
Factor y5 out of 8y57√x6y.
y5(87√x6y)xy6
Step 4.2
Cancel the common factors.
Step 4.2.1
Factor y5 out of xy6.
y5(87√x6y)y5(xy)
Step 4.2.2
Cancel the common factor.
y5(87√x6y)y5(xy)
Step 4.2.3
Rewrite the expression.
87√x6yxy
87√x6yxy
87√x6yxy