Linear Algebra Examples

Evaluate 8/( seventh root of xy^6)
87xy6
Step 1
Multiply 87xy6 by 7xy667xy66.
87xy67xy667xy66
Step 2
Combine and simplify the denominator.
Tap for more steps...
Step 2.1
Multiply 87xy6 by 7xy667xy66.
87xy667xy67xy66
Step 2.2
Raise 7xy6 to the power of 1.
87xy667xy617xy66
Step 2.3
Use the power rule aman=am+n to combine exponents.
87xy667xy61+6
Step 2.4
Add 1 and 6.
87xy667xy67
Step 2.5
Rewrite 7xy67 as xy6.
Tap for more steps...
Step 2.5.1
Use nax=axn to rewrite 7xy6 as (xy6)17.
87xy66((xy6)17)7
Step 2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
87xy66(xy6)177
Step 2.5.3
Combine 17 and 7.
87xy66(xy6)77
Step 2.5.4
Cancel the common factor of 7.
Tap for more steps...
Step 2.5.4.1
Cancel the common factor.
87xy66(xy6)77
Step 2.5.4.2
Rewrite the expression.
87xy66(xy6)1
87xy66(xy6)1
Step 2.5.5
Simplify.
87xy66xy6
87xy66xy6
87xy66xy6
Step 3
Simplify the numerator.
Tap for more steps...
Step 3.1
Rewrite 7xy66 as 7(xy6)6.
87(xy6)6xy6
Step 3.2
Apply the product rule to xy6.
87x6(y6)6xy6
Step 3.3
Multiply the exponents in (y6)6.
Tap for more steps...
Step 3.3.1
Apply the power rule and multiply exponents, (am)n=amn.
87x6y66xy6
Step 3.3.2
Multiply 6 by 6.
87x6y36xy6
87x6y36xy6
Step 3.4
Rewrite x6y36 as (y5)7(x6y).
Tap for more steps...
Step 3.4.1
Factor out y35.
87x6(y35y)xy6
Step 3.4.2
Rewrite y35 as (y5)7.
87x6((y5)7y)xy6
Step 3.4.3
Reorder x6 and (y5)7.
87(y5)7x6yxy6
Step 3.4.4
Add parentheses.
87(y5)7(x6y)xy6
87(y5)7(x6y)xy6
Step 3.5
Pull terms out from under the radical.
8y57x6yxy6
8y57x6yxy6
Step 4
Cancel the common factor of y5 and y6.
Tap for more steps...
Step 4.1
Factor y5 out of 8y57x6y.
y5(87x6y)xy6
Step 4.2
Cancel the common factors.
Tap for more steps...
Step 4.2.1
Factor y5 out of xy6.
y5(87x6y)y5(xy)
Step 4.2.2
Cancel the common factor.
y5(87x6y)y5(xy)
Step 4.2.3
Rewrite the expression.
87x6yxy
87x6yxy
87x6yxy
 [x2  12  π  xdx ]