Enter a problem...
Linear Algebra Examples
[123233465]⎡⎢⎣123233465⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element a11a11.
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|3365|∣∣∣3365∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a11=3⋅5-6⋅3a11=3⋅5−6⋅3
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 33 by 55.
a11=15-6⋅3a11=15−6⋅3
Step 2.1.2.2.1.2
Multiply -6−6 by 33.
a11=15-18a11=15−18
a11=15-18a11=15−18
Step 2.1.2.2.2
Subtract 1818 from 1515.
a11=-3a11=−3
a11=-3a11=−3
a11=-3a11=−3
a11=-3a11=−3
Step 2.2
Calculate the minor for element a12a12.
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2345|∣∣∣2345∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a12=2⋅5-4⋅3a12=2⋅5−4⋅3
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 22 by 55.
a12=10-4⋅3a12=10−4⋅3
Step 2.2.2.2.1.2
Multiply -4−4 by 33.
a12=10-12a12=10−12
a12=10-12a12=10−12
Step 2.2.2.2.2
Subtract 12 from 10.
a12=-2
a12=-2
a12=-2
a12=-2
Step 2.3
Calculate the minor for element a13.
Step 2.3.1
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2346|
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a13=2⋅6-4⋅3
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 2 by 6.
a13=12-4⋅3
Step 2.3.2.2.1.2
Multiply -4 by 3.
a13=12-12
a13=12-12
Step 2.3.2.2.2
Subtract 12 from 12.
a13=0
a13=0
a13=0
a13=0
Step 2.4
Calculate the minor for element a21.
Step 2.4.1
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2365|
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a21=2⋅5-6⋅3
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 2 by 5.
a21=10-6⋅3
Step 2.4.2.2.1.2
Multiply -6 by 3.
a21=10-18
a21=10-18
Step 2.4.2.2.2
Subtract 18 from 10.
a21=-8
a21=-8
a21=-8
a21=-8
Step 2.5
Calculate the minor for element a22.
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1345|
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=1⋅5-4⋅3
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 5 by 1.
a22=5-4⋅3
Step 2.5.2.2.1.2
Multiply -4 by 3.
a22=5-12
a22=5-12
Step 2.5.2.2.2
Subtract 12 from 5.
a22=-7
a22=-7
a22=-7
a22=-7
Step 2.6
Calculate the minor for element a23.
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1246|
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=1⋅6-4⋅2
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply 6 by 1.
a23=6-4⋅2
Step 2.6.2.2.1.2
Multiply -4 by 2.
a23=6-8
a23=6-8
Step 2.6.2.2.2
Subtract 8 from 6.
a23=-2
a23=-2
a23=-2
a23=-2
Step 2.7
Calculate the minor for element a31.
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|2333|
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=2⋅3-3⋅3
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 2 by 3.
a31=6-3⋅3
Step 2.7.2.2.1.2
Multiply -3 by 3.
a31=6-9
a31=6-9
Step 2.7.2.2.2
Subtract 9 from 6.
a31=-3
a31=-3
a31=-3
a31=-3
Step 2.8
Calculate the minor for element a32.
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|1323|
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=1⋅3-2⋅3
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 3 by 1.
a32=3-2⋅3
Step 2.8.2.2.1.2
Multiply -2 by 3.
a32=3-6
a32=3-6
Step 2.8.2.2.2
Subtract 6 from 3.
a32=-3
a32=-3
a32=-3
a32=-3
Step 2.9
Calculate the minor for element a33.
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|1223|
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=1⋅3-2⋅2
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 3 by 1.
a33=3-2⋅2
Step 2.9.2.2.1.2
Multiply -2 by 2.
a33=3-4
a33=3-4
Step 2.9.2.2.2
Subtract 4 from 3.
a33=-1
a33=-1
a33=-1
a33=-1
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[-3208-72-33-1]
[-3208-72-33-1]