Linear Algebra Examples

Solve Using an Inverse Matrix -21x-2y+z=-76 , 12x+y=46 , -24x-2y+z=-88
-21x-2y+z=-7621x2y+z=76 , 12x+y=4612x+y=46 , -24x-2y+z=-8824x2y+z=88
Step 1
Find the AX=BAX=B from the system of equations.
[-21-211210-24-21][xyz]=[-7646-88]212112102421xyz=764688
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
Step 2.1
Find the determinant.
Tap for more steps...
Step 2.1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Tap for more steps...
Step 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 2.1.1.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|-21-21|2121
Step 2.1.1.4
Multiply element a21a21 by its cofactor.
-12|-21-21|122121
Step 2.1.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|-211-241|211241
Step 2.1.1.6
Multiply element a22a22 by its cofactor.
1|-211-241|1211241
Step 2.1.1.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|-21-2-24-2|212242
Step 2.1.1.8
Multiply element a23a23 by its cofactor.
0|-21-2-24-2|0212242
Step 2.1.1.9
Add the terms together.
-12|-21-21|+1|-211-241|+0|-21-2-24-2|122121+1211241+0212242
-12|-21-21|+1|-211-241|+0|-21-2-24-2|122121+1211241+0212242
Step 2.1.2
Multiply 00 by |-21-2-24-2|212242.
-12|-21-21|+1|-211-241|+0122121+1211241+0
Step 2.1.3
Evaluate |-21-21|2121.
Tap for more steps...
Step 2.1.3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
-12(-21-(-21))+1|-211-241|+012(21(21))+1211241+0
Step 2.1.3.2
Simplify the determinant.
Tap for more steps...
Step 2.1.3.2.1
Simplify each term.
Tap for more steps...
Step 2.1.3.2.1.1
Multiply -22 by 11.
-12(-2-(-21))+1|-211-241|+012(2(21))+1211241+0
Step 2.1.3.2.1.2
Multiply -(-21)(21).
Tap for more steps...
Step 2.1.3.2.1.2.1
Multiply -22 by 11.
-12(-2--2)+1|-211-241|+012(22)+1211241+0
Step 2.1.3.2.1.2.2
Multiply -11 by -22.
-12(-2+2)+1|-211-241|+012(2+2)+1211241+0
-12(-2+2)+1|-211-241|+012(2+2)+1211241+0
-12(-2+2)+1|-211-241|+012(2+2)+1211241+0
Step 2.1.3.2.2
Add -22 and 22.
-120+1|-211-241|+0120+1211241+0
-120+1|-211-241|+0120+1211241+0
-120+1|-211-241|+0120+1211241+0
Step 2.1.4
Evaluate |-211-241|211241.
Tap for more steps...
Step 2.1.4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
-120+1(-211-(-241))+0120+1(211(241))+0
Step 2.1.4.2
Simplify the determinant.
Tap for more steps...
Step 2.1.4.2.1
Simplify each term.
Tap for more steps...
Step 2.1.4.2.1.1
Multiply -2121 by 11.
-120+1(-21-(-241))+0120+1(21(241))+0
Step 2.1.4.2.1.2
Multiply -(-241)(241).
Tap for more steps...
Step 2.1.4.2.1.2.1
Multiply -2424 by 11.
-120+1(-21--24)+0120+1(2124)+0
Step 2.1.4.2.1.2.2
Multiply -11 by -2424.
-120+1(-21+24)+0120+1(21+24)+0
-120+1(-21+24)+0120+1(21+24)+0
-120+1(-21+24)+0
Step 2.1.4.2.2
Add -21 and 24.
-120+13+0
-120+13+0
-120+13+0
Step 2.1.5
Simplify the determinant.
Tap for more steps...
Step 2.1.5.1
Simplify each term.
Tap for more steps...
Step 2.1.5.1.1
Multiply -12 by 0.
0+13+0
Step 2.1.5.1.2
Multiply 3 by 1.
0+3+0
0+3+0
Step 2.1.5.2
Add 0 and 3.
3+0
Step 2.1.5.3
Add 3 and 0.
3
3
3
Step 2.2
Since the determinant is non-zero, the inverse exists.
Step 2.3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[-21-211001210010-24-21001]
Step 2.4
Find the reduced row echelon form.
Tap for more steps...
Step 2.4.1
Multiply each element of R1 by -121 to make the entry at 1,1 a 1.
Tap for more steps...
Step 2.4.1.1
Multiply each element of R1 by -121 to make the entry at 1,1 a 1.
[-121-21-121-2-1211-1211-1210-12101210010-24-21001]
Step 2.4.1.2
Simplify R1.
[1221-121-121001210010-24-21001]
[1221-121-121001210010-24-21001]
Step 2.4.2
Perform the row operation R2=R2-12R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 2.4.2.1
Perform the row operation R2=R2-12R1 to make the entry at 2,1 a 0.
[1221-121-1210012-1211-12(221)0-12(-121)0-12(-121)1-1200-120-24-21001]
Step 2.4.2.2
Simplify R2.
[1221-121-121000-17474710-24-21001]
[1221-121-121000-17474710-24-21001]
Step 2.4.3
Perform the row operation R3=R3+24R1 to make the entry at 3,1 a 0.
Tap for more steps...
Step 2.4.3.1
Perform the row operation R3=R3+24R1 to make the entry at 3,1 a 0.
[1221-121-121000-17474710-24+241-2+24(221)1+24(-121)0+24(-121)0+2401+240]
Step 2.4.3.2
Simplify R3.
[1221-121-121000-17474710027-17-8701]
[1221-121-121000-17474710027-17-8701]
Step 2.4.4
Multiply each element of R2 by -7 to make the entry at 2,2 a 1.
Tap for more steps...
Step 2.4.4.1
Multiply each element of R2 by -7 to make the entry at 2,2 a 1.
[1221-121-12100-70-7(-17)-7(47)-7(47)-71-70027-17-8701]
Step 2.4.4.2
Simplify R2.
[1221-121-1210001-4-4-70027-17-8701]
[1221-121-1210001-4-4-70027-17-8701]
Step 2.4.5
Perform the row operation R3=R3-27R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 2.4.5.1
Perform the row operation R3=R3-27R2 to make the entry at 3,2 a 0.
[1221-121-1210001-4-4-700-27027-271-17-27-4-87-27-40-27-71-270]
Step 2.4.5.2
Simplify R3.
[1221-121-1210001-4-4-70001021]
[1221-121-1210001-4-4-70001021]
Step 2.4.6
Perform the row operation R2=R2+4R3 to make the entry at 2,3 a 0.
Tap for more steps...
Step 2.4.6.1
Perform the row operation R2=R2+4R3 to make the entry at 2,3 a 0.
[1221-121-121000+401+40-4+41-4+40-7+420+41001021]
Step 2.4.6.2
Simplify R2.
[1221-121-12100010-414001021]
[1221-121-12100010-414001021]
Step 2.4.7
Perform the row operation R1=R1+121R3 to make the entry at 1,3 a 0.
Tap for more steps...
Step 2.4.7.1
Perform the row operation R1=R1+121R3 to make the entry at 1,3 a 0.
[1+1210221+1210-121+1211-121+12100+12120+1211010-414001021]
Step 2.4.7.2
Simplify R1.
[12210-121221121010-414001021]
[12210-121221121010-414001021]
Step 2.4.8
Perform the row operation R1=R1-221R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 2.4.8.1
Perform the row operation R1=R1-221R2 to make the entry at 1,2 a 0.
[1-2210221-22110-2210-121-221-4221-2211121-2214010-414001021]
Step 2.4.8.2
Simplify R1.
[100130-13010-414001021]
[100130-13010-414001021]
[100130-13010-414001021]
Step 2.5
The right half of the reduced row echelon form is the inverse.
[130-13-414021]
[130-13-414021]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([130-13-414021][-21-211210-24-21])[xyz]=[130-13-414021][-7646-88]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. AA-1=1.
[xyz]=[130-13-414021][-7646-88]
Step 5
Multiply [130-13-414021][-7646-88].
Tap for more steps...
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[13-76+046-13-88-4-76+146+4-880-76+246+1-88]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[4-24]
[4-24]
Step 6
Simplify the left and right side.
[xyz]=[4-24]
Step 7
Find the solution.
x=4
y=-2
z=4
 [x2  12  π  xdx ]