Enter a problem...
Linear Algebra Examples
14x-21y-7z=10 , -4x+2y-2z=4 , 56x-21y+7z=5
Step 1
Find the AX=B from the system of equations.
[14-21-7-42-256-217]⋅[xyz]=[1045]
Step 2
Step 2.1
Find the determinant.
Step 2.1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 2.1.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|2-2-217|
Step 2.1.1.4
Multiply element a11 by its cofactor.
14|2-2-217|
Step 2.1.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-4-2567|
Step 2.1.1.6
Multiply element a12 by its cofactor.
21|-4-2567|
Step 2.1.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-4256-21|
Step 2.1.1.8
Multiply element a13 by its cofactor.
-7|-4256-21|
Step 2.1.1.9
Add the terms together.
14|2-2-217|+21|-4-2567|-7|-4256-21|
14|2-2-217|+21|-4-2567|-7|-4256-21|
Step 2.1.2
Evaluate |2-2-217|.
Step 2.1.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
14(2⋅7-(-21⋅-2))+21|-4-2567|-7|-4256-21|
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 2 by 7.
14(14-(-21⋅-2))+21|-4-2567|-7|-4256-21|
Step 2.1.2.2.1.2
Multiply -(-21⋅-2).
Step 2.1.2.2.1.2.1
Multiply -21 by -2.
14(14-1⋅42)+21|-4-2567|-7|-4256-21|
Step 2.1.2.2.1.2.2
Multiply -1 by 42.
14(14-42)+21|-4-2567|-7|-4256-21|
14(14-42)+21|-4-2567|-7|-4256-21|
14(14-42)+21|-4-2567|-7|-4256-21|
Step 2.1.2.2.2
Subtract 42 from 14.
14⋅-28+21|-4-2567|-7|-4256-21|
14⋅-28+21|-4-2567|-7|-4256-21|
14⋅-28+21|-4-2567|-7|-4256-21|
Step 2.1.3
Evaluate |-4-2567|.
Step 2.1.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
14⋅-28+21(-4⋅7-56⋅-2)-7|-4256-21|
Step 2.1.3.2
Simplify the determinant.
Step 2.1.3.2.1
Simplify each term.
Step 2.1.3.2.1.1
Multiply -4 by 7.
14⋅-28+21(-28-56⋅-2)-7|-4256-21|
Step 2.1.3.2.1.2
Multiply -56 by -2.
14⋅-28+21(-28+112)-7|-4256-21|
14⋅-28+21(-28+112)-7|-4256-21|
Step 2.1.3.2.2
Add -28 and 112.
14⋅-28+21⋅84-7|-4256-21|
14⋅-28+21⋅84-7|-4256-21|
14⋅-28+21⋅84-7|-4256-21|
Step 2.1.4
Evaluate |-4256-21|.
Step 2.1.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
14⋅-28+21⋅84-7(-4⋅-21-56⋅2)
Step 2.1.4.2
Simplify the determinant.
Step 2.1.4.2.1
Simplify each term.
Step 2.1.4.2.1.1
Multiply -4 by -21.
14⋅-28+21⋅84-7(84-56⋅2)
Step 2.1.4.2.1.2
Multiply -56 by 2.
14⋅-28+21⋅84-7(84-112)
14⋅-28+21⋅84-7(84-112)
Step 2.1.4.2.2
Subtract 112 from 84.
14⋅-28+21⋅84-7⋅-28
14⋅-28+21⋅84-7⋅-28
14⋅-28+21⋅84-7⋅-28
Step 2.1.5
Simplify the determinant.
Step 2.1.5.1
Simplify each term.
Step 2.1.5.1.1
Multiply 14 by -28.
-392+21⋅84-7⋅-28
Step 2.1.5.1.2
Multiply 21 by 84.
-392+1764-7⋅-28
Step 2.1.5.1.3
Multiply -7 by -28.
-392+1764+196
-392+1764+196
Step 2.1.5.2
Add -392 and 1764.
1372+196
Step 2.1.5.3
Add 1372 and 196.
1568
1568
1568
Step 2.2
Since the determinant is non-zero, the inverse exists.
Step 2.3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[14-21-7100-42-201056-217001]
Step 2.4
Find the reduced row echelon form.
Step 2.4.1
Multiply each element of R1 by 114 to make the entry at 1,1 a 1.
Step 2.4.1.1
Multiply each element of R1 by 114 to make the entry at 1,1 a 1.
[1414-2114-714114014014-42-201056-217001]
Step 2.4.1.2
Simplify R1.
[1-32-1211400-42-201056-217001]
[1-32-1211400-42-201056-217001]
Step 2.4.2
Perform the row operation R2=R2+4R1 to make the entry at 2,1 a 0.
Step 2.4.2.1
Perform the row operation R2=R2+4R1 to make the entry at 2,1 a 0.
[1-32-1211400-4+4⋅12+4(-32)-2+4(-12)0+4(114)1+4⋅00+4⋅056-217001]
Step 2.4.2.2
Simplify R2.
[1-32-12114000-4-4271056-217001]
[1-32-12114000-4-4271056-217001]
Step 2.4.3
Perform the row operation R3=R3-56R1 to make the entry at 3,1 a 0.
Step 2.4.3.1
Perform the row operation R3=R3-56R1 to make the entry at 3,1 a 0.
[1-32-12114000-4-4271056-56⋅1-21-56(-32)7-56(-12)0-56(114)0-56⋅01-56⋅0]
Step 2.4.3.2
Simplify R3.
[1-32-12114000-4-4271006335-401]
[1-32-12114000-4-4271006335-401]
Step 2.4.4
Multiply each element of R2 by -14 to make the entry at 2,2 a 1.
Step 2.4.4.1
Multiply each element of R2 by -14 to make the entry at 2,2 a 1.
[1-32-1211400-14⋅0-14⋅-4-14⋅-4-14⋅27-14⋅1-14⋅006335-401]
Step 2.4.4.2
Simplify R2.
[1-32-1211400011-114-14006335-401]
[1-32-1211400011-114-14006335-401]
Step 2.4.5
Perform the row operation R3=R3-63R2 to make the entry at 3,2 a 0.
Step 2.4.5.1
Perform the row operation R3=R3-63R2 to make the entry at 3,2 a 0.
[1-32-1211400011-114-1400-63⋅063-63⋅135-63⋅1-4-63(-114)0-63(-14)1-63⋅0]
Step 2.4.5.2
Simplify R3.
[1-32-1211400011-114-14000-28126341]
[1-32-1211400011-114-14000-28126341]
Step 2.4.6
Multiply each element of R3 by -128 to make the entry at 3,3 a 1.
Step 2.4.6.1
Multiply each element of R3 by -128 to make the entry at 3,3 a 1.
[1-32-1211400011-114-140-128⋅0-128⋅0-128⋅-28-128⋅12-128⋅634-128⋅1]
Step 2.4.6.2
Simplify R3.
[1-32-1211400011-114-140001-156-916-128]
[1-32-1211400011-114-140001-156-916-128]
Step 2.4.7
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
Step 2.4.7.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[1-32-12114000-01-01-1-114+156-14+9160+128001-156-916-128]
Step 2.4.7.2
Simplify R2.
[1-32-1211400010-356516128001-156-916-128]
[1-32-1211400010-356516128001-156-916-128]
Step 2.4.8
Perform the row operation R1=R1+12R3 to make the entry at 1,3 a 0.
Step 2.4.8.1
Perform the row operation R1=R1+12R3 to make the entry at 1,3 a 0.
[1+12⋅0-32+12⋅0-12+12⋅1114+12(-156)0+12(-916)0+12(-128)010-356516128001-156-916-128]
Step 2.4.8.2
Simplify R1.
[1-320116-932-156010-356516128001-156-916-128]
[1-320116-932-156010-356516128001-156-916-128]
Step 2.4.9
Perform the row operation R1=R1+32R2 to make the entry at 1,2 a 0.
Step 2.4.9.1
Perform the row operation R1=R1+32R2 to make the entry at 1,2 a 0.
[1+32⋅0-32+32⋅10+32⋅0116+32(-356)-932+32⋅516-156+32⋅128010-356516128001-156-916-128]
Step 2.4.9.2
Simplify R1.
[100-156316128010-356516128001-156-916-128]
[100-156316128010-356516128001-156-916-128]
[100-156316128010-356516128001-156-916-128]
Step 2.5
The right half of the reduced row echelon form is the inverse.
[-156316128-356516128-156-916-128]
[-156316128-356516128-156-916-128]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([-156316128-356516128-156-916-128]⋅[14-21-7-42-256-217])⋅[xyz]=[-156316128-356516128-156-916-128]⋅[1045]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. A⋅A-1=1.
[xyz]=[-156316128-356516128-156-916-128]⋅[1045]
Step 5
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[-156⋅10+316⋅4+128⋅5-356⋅10+516⋅4+128⋅5-156⋅10-916⋅4-128⋅5]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[342528-7328]
[342528-7328]
Step 6
Simplify the left and right side.
[xyz]=[342528-7328]
Step 7
Find the solution.
x=34
y=2528
z=-7328