Enter a problem...
Linear Algebra Examples
13+2y=9x13+2y=9x , 3y=7x3y=7x
Step 1
Find the AX=BAX=B from the system of equations.
[-92-73]⋅[xy]=[-130][−92−73]⋅[xy]=[−130]
Step 2
Step 2.1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 2.2
Find the determinant.
Step 2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-9⋅3-(-7⋅2)−9⋅3−(−7⋅2)
Step 2.2.2
Simplify the determinant.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply -9−9 by 33.
-27-(-7⋅2)−27−(−7⋅2)
Step 2.2.2.1.2
Multiply -(-7⋅2)−(−7⋅2).
Step 2.2.2.1.2.1
Multiply -7−7 by 22.
-27--14−27−−14
Step 2.2.2.1.2.2
Multiply -1−1 by -14−14.
-27+14−27+14
-27+14−27+14
-27+14−27+14
Step 2.2.2.2
Add -27−27 and 1414.
-13−13
-13−13
-13−13
Step 2.3
Since the determinant is non-zero, the inverse exists.
Step 2.4
Substitute the known values into the formula for the inverse.
1-13[3-27-9]1−13[3−27−9]
Step 2.5
Move the negative in front of the fraction.
-113[3-27-9]−113[3−27−9]
Step 2.6
Multiply -113−113 by each element of the matrix.
[-113⋅3-113⋅-2-113⋅7-113⋅-9][−113⋅3−113⋅−2−113⋅7−113⋅−9]
Step 2.7
Simplify each element in the matrix.
Step 2.7.1
Multiply -113⋅3−113⋅3.
Step 2.7.1.1
Multiply 33 by -1−1.
[-3(113)-113⋅-2-113⋅7-113⋅-9]⎡⎢⎣−3(113)−113⋅−2−113⋅7−113⋅−9⎤⎥⎦
Step 2.7.1.2
Combine -3−3 and 113113.
[-313-113⋅-2-113⋅7-113⋅-9][−313−113⋅−2−113⋅7−113⋅−9]
[-313-113⋅-2-113⋅7-113⋅-9][−313−113⋅−2−113⋅7−113⋅−9]
Step 2.7.2
Move the negative in front of the fraction.
[-313-113⋅-2-113⋅7-113⋅-9][−313−113⋅−2−113⋅7−113⋅−9]
Step 2.7.3
Multiply -113⋅-2−113⋅−2.
Step 2.7.3.1
Multiply -2−2 by -1−1.
[-3132(113)-113⋅7-113⋅-9]⎡⎢⎣−3132(113)−113⋅7−113⋅−9⎤⎥⎦
Step 2.7.3.2
Combine 22 and 113113.
[-313213-113⋅7-113⋅-9][−313213−113⋅7−113⋅−9]
[-313213-113⋅7-113⋅-9][−313213−113⋅7−113⋅−9]
Step 2.7.4
Multiply -113⋅7−113⋅7.
Step 2.7.4.1
Multiply 77 by -1−1.
[-313213-7(113)-113⋅-9]⎡⎢⎣−313213−7(113)−113⋅−9⎤⎥⎦
Step 2.7.4.2
Combine -7−7 and 113113.
[-313213-713-113⋅-9][−313213−713−113⋅−9]
[-313213-713-113⋅-9][−313213−713−113⋅−9]
Step 2.7.5
Move the negative in front of the fraction.
[-313213-713-113⋅-9][−313213−713−113⋅−9]
Step 2.7.6
Multiply -113⋅-9−113⋅−9.
Step 2.7.6.1
Multiply -9−9 by -1−1.
[-313213-7139(113)]⎡⎢⎣−313213−7139(113)⎤⎥⎦
Step 2.7.6.2
Combine 99 and 113113.
[-313213-713913][−313213−713913]
[-313213-713913][−313213−713913]
[-313213-713913][−313213−713913]
[-313213-713913][−313213−713913]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([-313213-713913]⋅[-92-73])⋅[xy]=[-313213-713913]⋅[-130]([−313213−713913]⋅[−92−73])⋅[xy]=[−313213−713913]⋅[−130]
Step 4
Any matrix multiplied by its inverse is equal to 11 all the time. A⋅A-1=1A⋅A−1=1.
[xy]=[-313213-713913]⋅[-130][xy]=[−313213−713913]⋅[−130]
Step 5
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×22×2 and the second matrix is 2×12×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[-313⋅-13+213⋅0-713⋅-13+913⋅0][−313⋅−13+213⋅0−713⋅−13+913⋅0]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[37][37]
[37][37]
Step 6
Simplify the left and right side.
[xy]=[37][xy]=[37]
Step 7
Find the solution.
x=3x=3
y=7y=7