Linear Algebra Examples

Solve Using an Inverse Matrix 13+2y=9x , 3y=7x
13+2y=9x13+2y=9x , 3y=7x3y=7x
Step 1
Find the AX=BAX=B from the system of equations.
[-92-73][xy]=[-130][9273][xy]=[130]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
Step 2.1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1adbc[dbca] where ad-bcadbc is the determinant.
Step 2.2
Find the determinant.
Tap for more steps...
Step 2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
-93-(-72)93(72)
Step 2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Multiply -99 by 33.
-27-(-72)27(72)
Step 2.2.2.1.2
Multiply -(-72)(72).
Tap for more steps...
Step 2.2.2.1.2.1
Multiply -77 by 22.
-27--142714
Step 2.2.2.1.2.2
Multiply -11 by -1414.
-27+1427+14
-27+1427+14
-27+1427+14
Step 2.2.2.2
Add -2727 and 1414.
-1313
-1313
-1313
Step 2.3
Since the determinant is non-zero, the inverse exists.
Step 2.4
Substitute the known values into the formula for the inverse.
1-13[3-27-9]113[3279]
Step 2.5
Move the negative in front of the fraction.
-113[3-27-9]113[3279]
Step 2.6
Multiply -113113 by each element of the matrix.
[-1133-113-2-1137-113-9][1133113211371139]
Step 2.7
Simplify each element in the matrix.
Tap for more steps...
Step 2.7.1
Multiply -11331133.
Tap for more steps...
Step 2.7.1.1
Multiply 33 by -11.
[-3(113)-113-2-1137-113-9]3(113)113211371139
Step 2.7.1.2
Combine -33 and 113113.
[-313-113-2-1137-113-9][313113211371139]
[-313-113-2-1137-113-9][313113211371139]
Step 2.7.2
Move the negative in front of the fraction.
[-313-113-2-1137-113-9][313113211371139]
Step 2.7.3
Multiply -113-21132.
Tap for more steps...
Step 2.7.3.1
Multiply -22 by -11.
[-3132(113)-1137-113-9]3132(113)11371139
Step 2.7.3.2
Combine 22 and 113113.
[-313213-1137-113-9][31321311371139]
[-313213-1137-113-9][31321311371139]
Step 2.7.4
Multiply -11371137.
Tap for more steps...
Step 2.7.4.1
Multiply 77 by -11.
[-313213-7(113)-113-9]3132137(113)1139
Step 2.7.4.2
Combine -77 and 113113.
[-313213-713-113-9][3132137131139]
[-313213-713-113-9][3132137131139]
Step 2.7.5
Move the negative in front of the fraction.
[-313213-713-113-9][3132137131139]
Step 2.7.6
Multiply -113-91139.
Tap for more steps...
Step 2.7.6.1
Multiply -99 by -11.
[-313213-7139(113)]3132137139(113)
Step 2.7.6.2
Combine 99 and 113113.
[-313213-713913][313213713913]
[-313213-713913][313213713913]
[-313213-713913][313213713913]
[-313213-713913][313213713913]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([-313213-713913][-92-73])[xy]=[-313213-713913][-130]([313213713913][9273])[xy]=[313213713913][130]
Step 4
Any matrix multiplied by its inverse is equal to 11 all the time. AA-1=1AA1=1.
[xy]=[-313213-713913][-130][xy]=[313213713913][130]
Step 5
Multiply [-313213-713913][-130][313213713913][130].
Tap for more steps...
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×22×2 and the second matrix is 2×12×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[-313-13+2130-713-13+9130][31313+213071313+9130]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[37][37]
[37][37]
Step 6
Simplify the left and right side.
[xy]=[37][xy]=[37]
Step 7
Find the solution.
x=3x=3
y=7y=7
 [x2  12  π  xdx ]  x2  12  π  xdx