Enter a problem...
Linear Algebra Examples
12x-3y=-612x−3y=−6 , 2x+15y=302x+15y=30
Step 1
Find the AX=BAX=B from the system of equations.
[12-3215]⋅[xy]=[-630][12−3215]⋅[xy]=[−630]
Step 2
Step 2.1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 2.2
Find the determinant.
Step 2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
12⋅15-2⋅-312⋅15−2⋅−3
Step 2.2.2
Simplify the determinant.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 1212 by 1515.
180-2⋅-3180−2⋅−3
Step 2.2.2.1.2
Multiply -2−2 by -3−3.
180+6180+6
180+6180+6
Step 2.2.2.2
Add 180180 and 66.
186186
186186
186186
Step 2.3
Since the determinant is non-zero, the inverse exists.
Step 2.4
Substitute the known values into the formula for the inverse.
1186[153-212]1186[153−212]
Step 2.5
Multiply 11861186 by each element of the matrix.
[1186⋅151186⋅31186⋅-21186⋅12][1186⋅151186⋅31186⋅−21186⋅12]
Step 2.6
Simplify each element in the matrix.
Step 2.6.1
Cancel the common factor of 33.
Step 2.6.1.1
Factor 33 out of 186186.
[13(62)⋅151186⋅31186⋅-21186⋅12]⎡⎣13(62)⋅151186⋅31186⋅−21186⋅12⎤⎦
Step 2.6.1.2
Factor 33 out of 1515.
[13⋅62⋅(3⋅5)1186⋅31186⋅-21186⋅12][13⋅62⋅(3⋅5)1186⋅31186⋅−21186⋅12]
Step 2.6.1.3
Cancel the common factor.
[13⋅62⋅(3⋅5)1186⋅31186⋅-21186⋅12]
Step 2.6.1.4
Rewrite the expression.
[162⋅51186⋅31186⋅-21186⋅12]
[162⋅51186⋅31186⋅-21186⋅12]
Step 2.6.2
Combine 162 and 5.
[5621186⋅31186⋅-21186⋅12]
Step 2.6.3
Cancel the common factor of 3.
Step 2.6.3.1
Factor 3 out of 186.
[56213(62)⋅31186⋅-21186⋅12]
Step 2.6.3.2
Cancel the common factor.
[56213⋅62⋅31186⋅-21186⋅12]
Step 2.6.3.3
Rewrite the expression.
[5621621186⋅-21186⋅12]
[5621621186⋅-21186⋅12]
Step 2.6.4
Cancel the common factor of 2.
Step 2.6.4.1
Factor 2 out of 186.
[56216212(93)⋅-21186⋅12]
Step 2.6.4.2
Factor 2 out of -2.
[56216212⋅93⋅(2⋅-1)1186⋅12]
Step 2.6.4.3
Cancel the common factor.
[56216212⋅93⋅(2⋅-1)1186⋅12]
Step 2.6.4.4
Rewrite the expression.
[562162193⋅-11186⋅12]
[562162193⋅-11186⋅12]
Step 2.6.5
Combine 193 and -1.
[562162-1931186⋅12]
Step 2.6.6
Move the negative in front of the fraction.
[562162-1931186⋅12]
Step 2.6.7
Cancel the common factor of 6.
Step 2.6.7.1
Factor 6 out of 186.
[562162-19316(31)⋅12]
Step 2.6.7.2
Factor 6 out of 12.
[562162-19316⋅31⋅(6⋅2)]
Step 2.6.7.3
Cancel the common factor.
[562162-19316⋅31⋅(6⋅2)]
Step 2.6.7.4
Rewrite the expression.
[562162-193131⋅2]
[562162-193131⋅2]
Step 2.6.8
Combine 131 and 2.
[562162-193231]
[562162-193231]
[562162-193231]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([562162-193231]⋅[12-3215])⋅[xy]=[562162-193231]⋅[-630]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. A⋅A-1=1.
[xy]=[562162-193231]⋅[-630]
Step 5
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×2 and the second matrix is 2×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[562⋅-6+162⋅30-193⋅-6+231⋅30]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[02]
[02]
Step 6
Simplify the left and right side.
[xy]=[02]
Step 7
Find the solution.
x=0
y=2