Linear Algebra Examples

Find the Cofactor Matrix [[6e^(-4x),0,-3],[12e^(-4x),9e^(-2x),-15],[3e^(-4x),3e^(-2x),-3]]
[6e-4x0-312e-4x9e-2x-153e-4x3e-2x-3]6e4x0312e4x9e2x153e4x3e2x3
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]
Step 2
Use the sign chart and the given matrix to find the cofactor of each element.
Tap for more steps...
Step 2.1
Calculate the minor for element a11.
Tap for more steps...
Step 2.1.1
The minor for a11 is the determinant with row 1 and column 1 deleted.
|9e-2x-153e-2x-3|
Step 2.1.2
Evaluate the determinant.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a11=9e-2x-3-3e-2x-15
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply -3 by 9.
a11=-27e-2x-3e-2x-15
Step 2.1.2.2.1.2
Multiply -15 by -3.
a11=-27e-2x+45e-2x
a11=-27e-2x+45e-2x
Step 2.1.2.2.2
Add -27e-2x and 45e-2x.
a11=18e-2x
a11=18e-2x
a11=18e-2x
a11=18e-2x
Step 2.2
Calculate the minor for element a12.
Tap for more steps...
Step 2.2.1
The minor for a12 is the determinant with row 1 and column 2 deleted.
|12e-4x-153e-4x-3|
Step 2.2.2
Evaluate the determinant.
Tap for more steps...
Step 2.2.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a12=12e-4x-3-3e-4x-15
Step 2.2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.2.1.1
Multiply -3 by 12.
a12=-36e-4x-3e-4x-15
Step 2.2.2.2.1.2
Multiply -15 by -3.
a12=-36e-4x+45e-4x
a12=-36e-4x+45e-4x
Step 2.2.2.2.2
Add -36e-4x and 45e-4x.
a12=9e-4x
a12=9e-4x
a12=9e-4x
a12=9e-4x
Step 2.3
Calculate the minor for element a13.
Tap for more steps...
Step 2.3.1
The minor for a13 is the determinant with row 1 and column 3 deleted.
|12e-4x9e-2x3e-4x3e-2x|
Step 2.3.2
Evaluate the determinant.
Tap for more steps...
Step 2.3.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a13=12e-4x(3e-2x)-3e-4x(9e-2x)
Step 2.3.2.2
Simplify the determinant.
Tap for more steps...
Step 2.3.2.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.1.1
Rewrite using the commutative property of multiplication.
a13=123e-4xe-2x-3e-4x(9e-2x)
Step 2.3.2.2.1.2
Multiply e-4x by e-2x by adding the exponents.
Tap for more steps...
Step 2.3.2.2.1.2.1
Move e-2x.
a13=123(e-2xe-4x)-3e-4x(9e-2x)
Step 2.3.2.2.1.2.2
Use the power rule aman=am+n to combine exponents.
a13=123e-2x-4x-3e-4x(9e-2x)
Step 2.3.2.2.1.2.3
Subtract 4x from -2x.
a13=123e-6x-3e-4x(9e-2x)
a13=123e-6x-3e-4x(9e-2x)
Step 2.3.2.2.1.3
Multiply 12 by 3.
a13=36e-6x-3e-4x(9e-2x)
Step 2.3.2.2.1.4
Rewrite using the commutative property of multiplication.
a13=36e-6x-39e-4xe-2x
Step 2.3.2.2.1.5
Multiply e-4x by e-2x by adding the exponents.
Tap for more steps...
Step 2.3.2.2.1.5.1
Move e-2x.
a13=36e-6x-39(e-2xe-4x)
Step 2.3.2.2.1.5.2
Use the power rule aman=am+n to combine exponents.
a13=36e-6x-39e-2x-4x
Step 2.3.2.2.1.5.3
Subtract 4x from -2x.
a13=36e-6x-39e-6x
a13=36e-6x-39e-6x
Step 2.3.2.2.1.6
Multiply -3 by 9.
a13=36e-6x-27e-6x
a13=36e-6x-27e-6x
Step 2.3.2.2.2
Subtract 27e-6x from 36e-6x.
a13=9e-6x
a13=9e-6x
a13=9e-6x
a13=9e-6x
Step 2.4
Calculate the minor for element a21.
Tap for more steps...
Step 2.4.1
The minor for a21 is the determinant with row 2 and column 1 deleted.
|0-33e-2x-3|
Step 2.4.2
Evaluate the determinant.
Tap for more steps...
Step 2.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a21=0-3-3e-2x-3
Step 2.4.2.2
Simplify the determinant.
Tap for more steps...
Step 2.4.2.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.2.1.1
Multiply 0 by -3.
a21=0-3e-2x-3
Step 2.4.2.2.1.2
Multiply -3 by -3.
a21=0+9e-2x
a21=0+9e-2x
Step 2.4.2.2.2
Add 0 and 9e-2x.
a21=9e-2x
a21=9e-2x
a21=9e-2x
a21=9e-2x
Step 2.5
Calculate the minor for element a22.
Tap for more steps...
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|6e-4x-33e-4x-3|
Step 2.5.2
Evaluate the determinant.
Tap for more steps...
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=6e-4x-3-3e-4x-3
Step 2.5.2.2
Simplify the determinant.
Tap for more steps...
Step 2.5.2.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.2.1.1
Multiply -3 by 6.
a22=-18e-4x-3e-4x-3
Step 2.5.2.2.1.2
Multiply -3 by -3.
a22=-18e-4x+9e-4x
a22=-18e-4x+9e-4x
Step 2.5.2.2.2
Add -18e-4x and 9e-4x.
a22=-9e-4x
a22=-9e-4x
a22=-9e-4x
a22=-9e-4x
Step 2.6
Calculate the minor for element a23.
Tap for more steps...
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|6e-4x03e-4x3e-2x|
Step 2.6.2
Evaluate the determinant.
Tap for more steps...
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=6e-4x(3e-2x)-3e-4x0
Step 2.6.2.2
Simplify the determinant.
Tap for more steps...
Step 2.6.2.2.1
Simplify each term.
Tap for more steps...
Step 2.6.2.2.1.1
Rewrite using the commutative property of multiplication.
a23=63e-4xe-2x-3e-4x0
Step 2.6.2.2.1.2
Multiply e-4x by e-2x by adding the exponents.
Tap for more steps...
Step 2.6.2.2.1.2.1
Move e-2x.
a23=63(e-2xe-4x)-3e-4x0
Step 2.6.2.2.1.2.2
Use the power rule aman=am+n to combine exponents.
a23=63e-2x-4x-3e-4x0
Step 2.6.2.2.1.2.3
Subtract 4x from -2x.
a23=63e-6x-3e-4x0
a23=63e-6x-3e-4x0
Step 2.6.2.2.1.3
Multiply 6 by 3.
a23=18e-6x-3e-4x0
Step 2.6.2.2.1.4
Multiply -3e-4x0.
Tap for more steps...
Step 2.6.2.2.1.4.1
Multiply 0 by -3.
a23=18e-6x+0e-4x
Step 2.6.2.2.1.4.2
Multiply 0 by e-4x.
a23=18e-6x+0
a23=18e-6x+0
a23=18e-6x+0
Step 2.6.2.2.2
Add 18e-6x and 0.
a23=18e-6x
a23=18e-6x
a23=18e-6x
a23=18e-6x
Step 2.7
Calculate the minor for element a31.
Tap for more steps...
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|0-39e-2x-15|
Step 2.7.2
Evaluate the determinant.
Tap for more steps...
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=0-15-9e-2x-3
Step 2.7.2.2
Simplify the determinant.
Tap for more steps...
Step 2.7.2.2.1
Simplify each term.
Tap for more steps...
Step 2.7.2.2.1.1
Multiply 0 by -15.
a31=0-9e-2x-3
Step 2.7.2.2.1.2
Multiply -3 by -9.
a31=0+27e-2x
a31=0+27e-2x
Step 2.7.2.2.2
Add 0 and 27e-2x.
a31=27e-2x
a31=27e-2x
a31=27e-2x
a31=27e-2x
Step 2.8
Calculate the minor for element a32.
Tap for more steps...
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|6e-4x-312e-4x-15|
Step 2.8.2
Evaluate the determinant.
Tap for more steps...
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=6e-4x-15-12e-4x-3
Step 2.8.2.2
Simplify the determinant.
Tap for more steps...
Step 2.8.2.2.1
Simplify each term.
Tap for more steps...
Step 2.8.2.2.1.1
Multiply -15 by 6.
a32=-90e-4x-12e-4x-3
Step 2.8.2.2.1.2
Multiply -3 by -12.
a32=-90e-4x+36e-4x
a32=-90e-4x+36e-4x
Step 2.8.2.2.2
Add -90e-4x and 36e-4x.
a32=-54e-4x
a32=-54e-4x
a32=-54e-4x
a32=-54e-4x
Step 2.9
Calculate the minor for element a33.
Tap for more steps...
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|6e-4x012e-4x9e-2x|
Step 2.9.2
Evaluate the determinant.
Tap for more steps...
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=6e-4x(9e-2x)-12e-4x0
Step 2.9.2.2
Simplify the determinant.
Tap for more steps...
Step 2.9.2.2.1
Simplify each term.
Tap for more steps...
Step 2.9.2.2.1.1
Rewrite using the commutative property of multiplication.
a33=69e-4xe-2x-12e-4x0
Step 2.9.2.2.1.2
Multiply e-4x by e-2x by adding the exponents.
Tap for more steps...
Step 2.9.2.2.1.2.1
Move e-2x.
a33=69(e-2xe-4x)-12e-4x0
Step 2.9.2.2.1.2.2
Use the power rule aman=am+n to combine exponents.
a33=69e-2x-4x-12e-4x0
Step 2.9.2.2.1.2.3
Subtract 4x from -2x.
a33=69e-6x-12e-4x0
a33=69e-6x-12e-4x0
Step 2.9.2.2.1.3
Multiply 6 by 9.
a33=54e-6x-12e-4x0
Step 2.9.2.2.1.4
Multiply -12e-4x0.
Tap for more steps...
Step 2.9.2.2.1.4.1
Multiply 0 by -12.
a33=54e-6x+0e-4x
Step 2.9.2.2.1.4.2
Multiply 0 by e-4x.
a33=54e-6x+0
a33=54e-6x+0
a33=54e-6x+0
Step 2.9.2.2.2
Add 54e-6x and 0.
a33=54e-6x
a33=54e-6x
a33=54e-6x
a33=54e-6x
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[18e-2x-9e-4x9e-6x-9e-2x-9e-4x-18e-6x27e-2x54e-4x54e-6x]
[18e-2x-9e-4x9e-6x-9e-2x-9e-4x-18e-6x27e-2x54e-4x54e-6x]
 [x2  12  π  xdx ]