Enter a problem...
Linear Algebra Examples
[6e-4x0-312e-4x9e-2x-153e-4x3e-2x-3]⎡⎢⎣6e−4x0−312e−4x9e−2x−153e−4x3e−2x−3⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]
Step 2
Step 2.1
Calculate the minor for element a11.
Step 2.1.1
The minor for a11 is the determinant with row 1 and column 1 deleted.
|9e-2x-153e-2x-3|
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a11=9e-2x⋅-3-3e-2x⋅-15
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply -3 by 9.
a11=-27e-2x-3e-2x⋅-15
Step 2.1.2.2.1.2
Multiply -15 by -3.
a11=-27e-2x+45e-2x
a11=-27e-2x+45e-2x
Step 2.1.2.2.2
Add -27e-2x and 45e-2x.
a11=18e-2x
a11=18e-2x
a11=18e-2x
a11=18e-2x
Step 2.2
Calculate the minor for element a12.
Step 2.2.1
The minor for a12 is the determinant with row 1 and column 2 deleted.
|12e-4x-153e-4x-3|
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a12=12e-4x⋅-3-3e-4x⋅-15
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply -3 by 12.
a12=-36e-4x-3e-4x⋅-15
Step 2.2.2.2.1.2
Multiply -15 by -3.
a12=-36e-4x+45e-4x
a12=-36e-4x+45e-4x
Step 2.2.2.2.2
Add -36e-4x and 45e-4x.
a12=9e-4x
a12=9e-4x
a12=9e-4x
a12=9e-4x
Step 2.3
Calculate the minor for element a13.
Step 2.3.1
The minor for a13 is the determinant with row 1 and column 3 deleted.
|12e-4x9e-2x3e-4x3e-2x|
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a13=12e-4x(3e-2x)-3e-4x(9e-2x)
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Rewrite using the commutative property of multiplication.
a13=12⋅3e-4xe-2x-3e-4x(9e-2x)
Step 2.3.2.2.1.2
Multiply e-4x by e-2x by adding the exponents.
Step 2.3.2.2.1.2.1
Move e-2x.
a13=12⋅3(e-2xe-4x)-3e-4x(9e-2x)
Step 2.3.2.2.1.2.2
Use the power rule aman=am+n to combine exponents.
a13=12⋅3e-2x-4x-3e-4x(9e-2x)
Step 2.3.2.2.1.2.3
Subtract 4x from -2x.
a13=12⋅3e-6x-3e-4x(9e-2x)
a13=12⋅3e-6x-3e-4x(9e-2x)
Step 2.3.2.2.1.3
Multiply 12 by 3.
a13=36e-6x-3e-4x(9e-2x)
Step 2.3.2.2.1.4
Rewrite using the commutative property of multiplication.
a13=36e-6x-3⋅9e-4xe-2x
Step 2.3.2.2.1.5
Multiply e-4x by e-2x by adding the exponents.
Step 2.3.2.2.1.5.1
Move e-2x.
a13=36e-6x-3⋅9(e-2xe-4x)
Step 2.3.2.2.1.5.2
Use the power rule aman=am+n to combine exponents.
a13=36e-6x-3⋅9e-2x-4x
Step 2.3.2.2.1.5.3
Subtract 4x from -2x.
a13=36e-6x-3⋅9e-6x
a13=36e-6x-3⋅9e-6x
Step 2.3.2.2.1.6
Multiply -3 by 9.
a13=36e-6x-27e-6x
a13=36e-6x-27e-6x
Step 2.3.2.2.2
Subtract 27e-6x from 36e-6x.
a13=9e-6x
a13=9e-6x
a13=9e-6x
a13=9e-6x
Step 2.4
Calculate the minor for element a21.
Step 2.4.1
The minor for a21 is the determinant with row 2 and column 1 deleted.
|0-33e-2x-3|
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a21=0⋅-3-3e-2x⋅-3
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 0 by -3.
a21=0-3e-2x⋅-3
Step 2.4.2.2.1.2
Multiply -3 by -3.
a21=0+9e-2x
a21=0+9e-2x
Step 2.4.2.2.2
Add 0 and 9e-2x.
a21=9e-2x
a21=9e-2x
a21=9e-2x
a21=9e-2x
Step 2.5
Calculate the minor for element a22.
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|6e-4x-33e-4x-3|
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=6e-4x⋅-3-3e-4x⋅-3
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply -3 by 6.
a22=-18e-4x-3e-4x⋅-3
Step 2.5.2.2.1.2
Multiply -3 by -3.
a22=-18e-4x+9e-4x
a22=-18e-4x+9e-4x
Step 2.5.2.2.2
Add -18e-4x and 9e-4x.
a22=-9e-4x
a22=-9e-4x
a22=-9e-4x
a22=-9e-4x
Step 2.6
Calculate the minor for element a23.
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|6e-4x03e-4x3e-2x|
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=6e-4x(3e-2x)-3e-4x⋅0
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Rewrite using the commutative property of multiplication.
a23=6⋅3e-4xe-2x-3e-4x⋅0
Step 2.6.2.2.1.2
Multiply e-4x by e-2x by adding the exponents.
Step 2.6.2.2.1.2.1
Move e-2x.
a23=6⋅3(e-2xe-4x)-3e-4x⋅0
Step 2.6.2.2.1.2.2
Use the power rule aman=am+n to combine exponents.
a23=6⋅3e-2x-4x-3e-4x⋅0
Step 2.6.2.2.1.2.3
Subtract 4x from -2x.
a23=6⋅3e-6x-3e-4x⋅0
a23=6⋅3e-6x-3e-4x⋅0
Step 2.6.2.2.1.3
Multiply 6 by 3.
a23=18e-6x-3e-4x⋅0
Step 2.6.2.2.1.4
Multiply -3e-4x⋅0.
Step 2.6.2.2.1.4.1
Multiply 0 by -3.
a23=18e-6x+0e-4x
Step 2.6.2.2.1.4.2
Multiply 0 by e-4x.
a23=18e-6x+0
a23=18e-6x+0
a23=18e-6x+0
Step 2.6.2.2.2
Add 18e-6x and 0.
a23=18e-6x
a23=18e-6x
a23=18e-6x
a23=18e-6x
Step 2.7
Calculate the minor for element a31.
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|0-39e-2x-15|
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=0⋅-15-9e-2x⋅-3
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 0 by -15.
a31=0-9e-2x⋅-3
Step 2.7.2.2.1.2
Multiply -3 by -9.
a31=0+27e-2x
a31=0+27e-2x
Step 2.7.2.2.2
Add 0 and 27e-2x.
a31=27e-2x
a31=27e-2x
a31=27e-2x
a31=27e-2x
Step 2.8
Calculate the minor for element a32.
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|6e-4x-312e-4x-15|
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=6e-4x⋅-15-12e-4x⋅-3
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply -15 by 6.
a32=-90e-4x-12e-4x⋅-3
Step 2.8.2.2.1.2
Multiply -3 by -12.
a32=-90e-4x+36e-4x
a32=-90e-4x+36e-4x
Step 2.8.2.2.2
Add -90e-4x and 36e-4x.
a32=-54e-4x
a32=-54e-4x
a32=-54e-4x
a32=-54e-4x
Step 2.9
Calculate the minor for element a33.
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|6e-4x012e-4x9e-2x|
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=6e-4x(9e-2x)-12e-4x⋅0
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Rewrite using the commutative property of multiplication.
a33=6⋅9e-4xe-2x-12e-4x⋅0
Step 2.9.2.2.1.2
Multiply e-4x by e-2x by adding the exponents.
Step 2.9.2.2.1.2.1
Move e-2x.
a33=6⋅9(e-2xe-4x)-12e-4x⋅0
Step 2.9.2.2.1.2.2
Use the power rule aman=am+n to combine exponents.
a33=6⋅9e-2x-4x-12e-4x⋅0
Step 2.9.2.2.1.2.3
Subtract 4x from -2x.
a33=6⋅9e-6x-12e-4x⋅0
a33=6⋅9e-6x-12e-4x⋅0
Step 2.9.2.2.1.3
Multiply 6 by 9.
a33=54e-6x-12e-4x⋅0
Step 2.9.2.2.1.4
Multiply -12e-4x⋅0.
Step 2.9.2.2.1.4.1
Multiply 0 by -12.
a33=54e-6x+0e-4x
Step 2.9.2.2.1.4.2
Multiply 0 by e-4x.
a33=54e-6x+0
a33=54e-6x+0
a33=54e-6x+0
Step 2.9.2.2.2
Add 54e-6x and 0.
a33=54e-6x
a33=54e-6x
a33=54e-6x
a33=54e-6x
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[18e-2x-9e-4x9e-6x-9e-2x-9e-4x-18e-6x27e-2x54e-4x54e-6x]
[18e-2x-9e-4x9e-6x-9e-2x-9e-4x-18e-6x27e-2x54e-4x54e-6x]