Enter a problem...
Linear Algebra Examples
[642518687]⎡⎢⎣642518687⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element a11a11.
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|1887|∣∣∣1887∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a11=1⋅7-8⋅8a11=1⋅7−8⋅8
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 77 by 11.
a11=7-8⋅8a11=7−8⋅8
Step 2.1.2.2.1.2
Multiply -8−8 by 88.
a11=7-64a11=7−64
a11=7-64a11=7−64
Step 2.1.2.2.2
Subtract 6464 from 77.
a11=-57a11=−57
a11=-57a11=−57
a11=-57a11=−57
a11=-57a11=−57
Step 2.2
Calculate the minor for element a12a12.
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|5867|∣∣∣5867∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a12=5⋅7-6⋅8a12=5⋅7−6⋅8
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 55 by 77.
a12=35-6⋅8a12=35−6⋅8
Step 2.2.2.2.1.2
Multiply -6−6 by 88.
a12=35-48a12=35−48
a12=35-48a12=35−48
Step 2.2.2.2.2
Subtract 4848 from 3535.
a12=-13a12=−13
a12=-13a12=−13
a12=-13a12=−13
a12=-13a12=−13
Step 2.3
Calculate the minor for element a13a13.
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|5168|∣∣∣5168∣∣∣
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a13=5⋅8-6⋅1a13=5⋅8−6⋅1
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 55 by 88.
a13=40-6⋅1a13=40−6⋅1
Step 2.3.2.2.1.2
Multiply -6−6 by 11.
a13=40-6a13=40−6
a13=40-6a13=40−6
Step 2.3.2.2.2
Subtract 66 from 4040.
a13=34a13=34
a13=34a13=34
a13=34a13=34
a13=34a13=34
Step 2.4
Calculate the minor for element a21a21.
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|4287|∣∣∣4287∣∣∣
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a21=4⋅7-8⋅2a21=4⋅7−8⋅2
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 44 by 77.
a21=28-8⋅2a21=28−8⋅2
Step 2.4.2.2.1.2
Multiply -8−8 by 22.
a21=28-16a21=28−16
a21=28-16a21=28−16
Step 2.4.2.2.2
Subtract 1616 from 2828.
a21=12a21=12
a21=12a21=12
a21=12a21=12
a21=12a21=12
Step 2.5
Calculate the minor for element a22a22.
Step 2.5.1
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|6267|∣∣∣6267∣∣∣
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a22=6⋅7-6⋅2a22=6⋅7−6⋅2
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply 66 by 77.
a22=42-6⋅2a22=42−6⋅2
Step 2.5.2.2.1.2
Multiply -6−6 by 22.
a22=42-12a22=42−12
a22=42-12a22=42−12
Step 2.5.2.2.2
Subtract 1212 from 4242.
a22=30a22=30
a22=30a22=30
a22=30a22=30
a22=30a22=30
Step 2.6
Calculate the minor for element a23a23.
Step 2.6.1
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|6468|∣∣∣6468∣∣∣
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a23=6⋅8-6⋅4a23=6⋅8−6⋅4
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply 66 by 88.
a23=48-6⋅4a23=48−6⋅4
Step 2.6.2.2.1.2
Multiply -6−6 by 44.
a23=48-24a23=48−24
a23=48-24a23=48−24
Step 2.6.2.2.2
Subtract 2424 from 4848.
a23=24a23=24
a23=24a23=24
a23=24a23=24
a23=24a23=24
Step 2.7
Calculate the minor for element a31a31.
Step 2.7.1
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|4218|∣∣∣4218∣∣∣
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a31=4⋅8-1⋅2a31=4⋅8−1⋅2
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 44 by 88.
a31=32-1⋅2a31=32−1⋅2
Step 2.7.2.2.1.2
Multiply -1−1 by 22.
a31=32-2a31=32−2
a31=32-2a31=32−2
Step 2.7.2.2.2
Subtract 22 from 3232.
a31=30a31=30
a31=30a31=30
a31=30a31=30
a31=30a31=30
Step 2.8
Calculate the minor for element a32a32.
Step 2.8.1
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|6258|∣∣∣6258∣∣∣
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a32=6⋅8-5⋅2a32=6⋅8−5⋅2
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 66 by 88.
a32=48-5⋅2a32=48−5⋅2
Step 2.8.2.2.1.2
Multiply -5−5 by 22.
a32=48-10a32=48−10
a32=48-10a32=48−10
Step 2.8.2.2.2
Subtract 1010 from 4848.
a32=38a32=38
a32=38a32=38
a32=38a32=38
a32=38a32=38
Step 2.9
Calculate the minor for element a33a33.
Step 2.9.1
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|6451|∣∣∣6451∣∣∣
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a33=6⋅1-5⋅4a33=6⋅1−5⋅4
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 66 by 11.
a33=6-5⋅4a33=6−5⋅4
Step 2.9.2.2.1.2
Multiply -5−5 by 44.
a33=6-20a33=6−20
a33=6-20a33=6−20
Step 2.9.2.2.2
Subtract 2020 from 66.
a33=-14a33=−14
a33=-14
a33=-14
a33=-14
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[-571334-1230-2430-38-14]
[-571334-1230-2430-38-14]