Linear Algebra Examples

Find the Cofactor Matrix [[6,4,2],[5,1,8],[6,8,7]]
[642518687]642518687
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]+++++
Step 2
Use the sign chart and the given matrix to find the cofactor of each element.
Tap for more steps...
Step 2.1
Calculate the minor for element a11a11.
Tap for more steps...
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|1887|1887
Step 2.1.2
Evaluate the determinant.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a11=17-88a11=1788
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply 77 by 11.
a11=7-88a11=788
Step 2.1.2.2.1.2
Multiply -88 by 88.
a11=7-64a11=764
a11=7-64a11=764
Step 2.1.2.2.2
Subtract 6464 from 77.
a11=-57a11=57
a11=-57a11=57
a11=-57a11=57
a11=-57a11=57
Step 2.2
Calculate the minor for element a12a12.
Tap for more steps...
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|5867|5867
Step 2.2.2
Evaluate the determinant.
Tap for more steps...
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a12=57-68a12=5768
Step 2.2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.2.1.1
Multiply 55 by 77.
a12=35-68a12=3568
Step 2.2.2.2.1.2
Multiply -66 by 88.
a12=35-48a12=3548
a12=35-48a12=3548
Step 2.2.2.2.2
Subtract 4848 from 3535.
a12=-13a12=13
a12=-13a12=13
a12=-13a12=13
a12=-13a12=13
Step 2.3
Calculate the minor for element a13a13.
Tap for more steps...
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|5168|5168
Step 2.3.2
Evaluate the determinant.
Tap for more steps...
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a13=58-61a13=5861
Step 2.3.2.2
Simplify the determinant.
Tap for more steps...
Step 2.3.2.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.1.1
Multiply 55 by 88.
a13=40-61a13=4061
Step 2.3.2.2.1.2
Multiply -66 by 11.
a13=40-6a13=406
a13=40-6a13=406
Step 2.3.2.2.2
Subtract 66 from 4040.
a13=34a13=34
a13=34a13=34
a13=34a13=34
a13=34a13=34
Step 2.4
Calculate the minor for element a21a21.
Tap for more steps...
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|4287|4287
Step 2.4.2
Evaluate the determinant.
Tap for more steps...
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a21=47-82a21=4782
Step 2.4.2.2
Simplify the determinant.
Tap for more steps...
Step 2.4.2.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.2.1.1
Multiply 44 by 77.
a21=28-82a21=2882
Step 2.4.2.2.1.2
Multiply -88 by 22.
a21=28-16a21=2816
a21=28-16a21=2816
Step 2.4.2.2.2
Subtract 1616 from 2828.
a21=12a21=12
a21=12a21=12
a21=12a21=12
a21=12a21=12
Step 2.5
Calculate the minor for element a22a22.
Tap for more steps...
Step 2.5.1
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|6267|6267
Step 2.5.2
Evaluate the determinant.
Tap for more steps...
Step 2.5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a22=67-62a22=6762
Step 2.5.2.2
Simplify the determinant.
Tap for more steps...
Step 2.5.2.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.2.1.1
Multiply 66 by 77.
a22=42-62a22=4262
Step 2.5.2.2.1.2
Multiply -66 by 22.
a22=42-12a22=4212
a22=42-12a22=4212
Step 2.5.2.2.2
Subtract 1212 from 4242.
a22=30a22=30
a22=30a22=30
a22=30a22=30
a22=30a22=30
Step 2.6
Calculate the minor for element a23a23.
Tap for more steps...
Step 2.6.1
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|6468|6468
Step 2.6.2
Evaluate the determinant.
Tap for more steps...
Step 2.6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a23=68-64a23=6864
Step 2.6.2.2
Simplify the determinant.
Tap for more steps...
Step 2.6.2.2.1
Simplify each term.
Tap for more steps...
Step 2.6.2.2.1.1
Multiply 66 by 88.
a23=48-64a23=4864
Step 2.6.2.2.1.2
Multiply -66 by 44.
a23=48-24a23=4824
a23=48-24a23=4824
Step 2.6.2.2.2
Subtract 2424 from 4848.
a23=24a23=24
a23=24a23=24
a23=24a23=24
a23=24a23=24
Step 2.7
Calculate the minor for element a31a31.
Tap for more steps...
Step 2.7.1
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|4218|4218
Step 2.7.2
Evaluate the determinant.
Tap for more steps...
Step 2.7.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a31=48-12a31=4812
Step 2.7.2.2
Simplify the determinant.
Tap for more steps...
Step 2.7.2.2.1
Simplify each term.
Tap for more steps...
Step 2.7.2.2.1.1
Multiply 44 by 88.
a31=32-12a31=3212
Step 2.7.2.2.1.2
Multiply -11 by 22.
a31=32-2a31=322
a31=32-2a31=322
Step 2.7.2.2.2
Subtract 22 from 3232.
a31=30a31=30
a31=30a31=30
a31=30a31=30
a31=30a31=30
Step 2.8
Calculate the minor for element a32a32.
Tap for more steps...
Step 2.8.1
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|6258|6258
Step 2.8.2
Evaluate the determinant.
Tap for more steps...
Step 2.8.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a32=68-52a32=6852
Step 2.8.2.2
Simplify the determinant.
Tap for more steps...
Step 2.8.2.2.1
Simplify each term.
Tap for more steps...
Step 2.8.2.2.1.1
Multiply 66 by 88.
a32=48-52a32=4852
Step 2.8.2.2.1.2
Multiply -55 by 22.
a32=48-10a32=4810
a32=48-10a32=4810
Step 2.8.2.2.2
Subtract 1010 from 4848.
a32=38a32=38
a32=38a32=38
a32=38a32=38
a32=38a32=38
Step 2.9
Calculate the minor for element a33a33.
Tap for more steps...
Step 2.9.1
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|6451|6451
Step 2.9.2
Evaluate the determinant.
Tap for more steps...
Step 2.9.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a33=61-54a33=6154
Step 2.9.2.2
Simplify the determinant.
Tap for more steps...
Step 2.9.2.2.1
Simplify each term.
Tap for more steps...
Step 2.9.2.2.1.1
Multiply 66 by 11.
a33=6-54a33=654
Step 2.9.2.2.1.2
Multiply -55 by 44.
a33=6-20a33=620
a33=6-20a33=620
Step 2.9.2.2.2
Subtract 2020 from 66.
a33=-14a33=14
a33=-14
a33=-14
a33=-14
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[-571334-1230-2430-38-14]
[-571334-1230-2430-38-14]
 [x2  12  π  xdx ]