Enter a problem...
Linear Algebra Examples
[-21-2-41214965-2-43-4510]
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI4)
Step 2
The identity matrix or unit matrix of size 4 is the 4×4 square matrix with ones on the main diagonal and zeros elsewhere.
[1000010000100001]
Step 3
Step 3.1
Substitute [-21-2-41214965-2-43-4510] for A.
p(λ)=determinant([-21-2-41214965-2-43-4510]-λI4)
Step 3.2
Substitute [1000010000100001] for I4.
p(λ)=determinant([-21-2-41214965-2-43-4510]-λ[1000010000100001])
p(λ)=determinant([-21-2-41214965-2-43-4510]-λ[1000010000100001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2
Multiply -λ⋅0.
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0.
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ00λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4
Multiply -λ⋅0.
Step 4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ000λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.5
Multiply -λ⋅0.
Step 4.1.2.5.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.5.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6
Multiply -1 by 1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.7
Multiply -λ⋅0.
Step 4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.8
Multiply -λ⋅0.
Step 4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ00λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.9
Multiply -λ⋅0.
Step 4.1.2.9.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ000λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.9.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.10
Multiply -λ⋅0.
Step 4.1.2.10.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.10.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.11
Multiply -1 by 1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.12
Multiply -λ⋅0.
Step 4.1.2.12.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.12.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.13
Multiply -λ⋅0.
Step 4.1.2.13.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ00λ-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.13.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.14
Multiply -λ⋅0.
Step 4.1.2.14.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ000λ-λ⋅0-λ⋅1])
Step 4.1.2.14.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ000-λ⋅0-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ000-λ⋅0-λ⋅1])
Step 4.1.2.15
Multiply -λ⋅0.
Step 4.1.2.15.1
Multiply 0 by -1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000λ-λ⋅1])
Step 4.1.2.15.2
Multiply 0 by λ.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000-λ⋅1])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000-λ⋅1])
Step 4.1.2.16
Multiply -1 by 1.
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([-21-2-41214965-2-43-4510]+[-λ0000-λ0000-λ0000-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[-2-λ1+0-2+0-4+012+01-λ4+09+06+05+0-2-λ-4+03+0-4+05+010-λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 1 and 0.
p(λ)=determinant[-2-λ1-2+0-4+012+01-λ4+09+06+05+0-2-λ-4+03+0-4+05+010-λ]
Step 4.3.2
Add -2 and 0.
p(λ)=determinant[-2-λ1-2-4+012+01-λ4+09+06+05+0-2-λ-4+03+0-4+05+010-λ]
Step 4.3.3
Add -4 and 0.
p(λ)=determinant[-2-λ1-2-412+01-λ4+09+06+05+0-2-λ-4+03+0-4+05+010-λ]
Step 4.3.4
Add 12 and 0.
p(λ)=determinant[-2-λ1-2-4121-λ4+09+06+05+0-2-λ-4+03+0-4+05+010-λ]
Step 4.3.5
Add 4 and 0.
p(λ)=determinant[-2-λ1-2-4121-λ49+06+05+0-2-λ-4+03+0-4+05+010-λ]
Step 4.3.6
Add 9 and 0.
p(λ)=determinant[-2-λ1-2-4121-λ496+05+0-2-λ-4+03+0-4+05+010-λ]
Step 4.3.7
Add 6 and 0.
p(λ)=determinant[-2-λ1-2-4121-λ4965+0-2-λ-4+03+0-4+05+010-λ]
Step 4.3.8
Add 5 and 0.
p(λ)=determinant[-2-λ1-2-4121-λ4965-2-λ-4+03+0-4+05+010-λ]
Step 4.3.9
Add -4 and 0.
p(λ)=determinant[-2-λ1-2-4121-λ4965-2-λ-43+0-4+05+010-λ]
Step 4.3.10
Add 3 and 0.
p(λ)=determinant[-2-λ1-2-4121-λ4965-2-λ-43-4+05+010-λ]
Step 4.3.11
Add -4 and 0.
p(λ)=determinant[-2-λ1-2-4121-λ4965-2-λ-43-45+010-λ]
Step 4.3.12
Add 5 and 0.
p(λ)=determinant[-2-λ1-2-4121-λ4965-2-λ-43-4510-λ]
p(λ)=determinant[-2-λ1-2-4121-λ4965-2-λ-43-4510-λ]
p(λ)=determinant[-2-λ1-2-4121-λ4965-2-λ-43-4510-λ]
Step 5
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|1-λ495-2-λ-4-4510-λ|
Step 5.1.4
Multiply element a11 by its cofactor.
(-2-λ)|1-λ495-2-λ-4-4510-λ|
Step 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|12496-2-λ-43510-λ|
Step 5.1.6
Multiply element a12 by its cofactor.
-1|12496-2-λ-43510-λ|
Step 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|121-λ965-43-410-λ|
Step 5.1.8
Multiply element a13 by its cofactor.
-2|121-λ965-43-410-λ|
Step 5.1.9
The minor for a14 is the determinant with row 1 and column 4 deleted.
|121-λ465-2-λ3-45|
Step 5.1.10
Multiply element a14 by its cofactor.
4|121-λ465-2-λ3-45|
Step 5.1.11
Add the terms together.
p(λ)=(-2-λ)|1-λ495-2-λ-4-4510-λ|-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)|1-λ495-2-λ-4-4510-λ|-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2
Evaluate |1-λ495-2-λ-4-4510-λ|.
Step 5.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 5.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-2-λ-4510-λ|
Step 5.2.1.4
Multiply element a11 by its cofactor.
(1-λ)|-2-λ-4510-λ|
Step 5.2.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|5-4-410-λ|
Step 5.2.1.6
Multiply element a12 by its cofactor.
-4|5-4-410-λ|
Step 5.2.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|5-2-λ-45|
Step 5.2.1.8
Multiply element a13 by its cofactor.
9|5-2-λ-45|
Step 5.2.1.9
Add the terms together.
p(λ)=(-2-λ)((1-λ)|-2-λ-4510-λ|-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)|-2-λ-4510-λ|-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2
Evaluate |-2-λ-4510-λ|.
Step 5.2.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(-2-λ)((1-λ)((-2-λ)(10-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2
Simplify the determinant.
Step 5.2.2.2.1
Simplify each term.
Step 5.2.2.2.1.1
Expand (-2-λ)(10-λ) using the FOIL Method.
Step 5.2.2.2.1.1.1
Apply the distributive property.
p(λ)=(-2-λ)((1-λ)(-2(10-λ)-λ(10-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.1.2
Apply the distributive property.
p(λ)=(-2-λ)((1-λ)(-2⋅10-2(-λ)-λ(10-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.1.3
Apply the distributive property.
p(λ)=(-2-λ)((1-λ)(-2⋅10-2(-λ)-λ⋅10-λ(-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-2⋅10-2(-λ)-λ⋅10-λ(-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.2
Simplify and combine like terms.
Step 5.2.2.2.1.2.1
Simplify each term.
Step 5.2.2.2.1.2.1.1
Multiply -2 by 10.
p(λ)=(-2-λ)((1-λ)(-20-2(-λ)-λ⋅10-λ(-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.2.1.2
Multiply -1 by -2.
p(λ)=(-2-λ)((1-λ)(-20+2λ-λ⋅10-λ(-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.2.1.3
Multiply 10 by -1.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ-λ(-λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ-1⋅-1λ⋅λ-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 5.2.2.2.1.2.1.5.1
Move λ.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ-1⋅-1(λ⋅λ)-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ-1⋅-1λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ-1⋅-1λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.2.1.6
Multiply -1 by -1.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ+1λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ+λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-20+2λ-10λ+λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.2.2
Subtract 10λ from 2λ.
p(λ)=(-2-λ)((1-λ)(-20-8λ+λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-20-8λ+λ2-5⋅-4)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.1.3
Multiply -5 by -4.
p(λ)=(-2-λ)((1-λ)(-20-8λ+λ2+20)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-20-8λ+λ2+20)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.2
Combine the opposite terms in -20-8λ+λ2+20.
Step 5.2.2.2.2.1
Add -20 and 20.
p(λ)=(-2-λ)((1-λ)(-8λ+λ2+0)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.2.2
Add -8λ+λ2 and 0.
p(λ)=(-2-λ)((1-λ)(-8λ+λ2)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(-8λ+λ2)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.2.2.3
Reorder -8λ and λ2.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4|5-4-410-λ|+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.3
Evaluate |5-4-410-λ|.
Step 5.2.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(5(10-λ)-(-4⋅-4))+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.3.2
Simplify the determinant.
Step 5.2.3.2.1
Simplify each term.
Step 5.2.3.2.1.1
Apply the distributive property.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(5⋅10+5(-λ)-(-4⋅-4))+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.3.2.1.2
Multiply 5 by 10.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50+5(-λ)-(-4⋅-4))+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.3.2.1.3
Multiply -1 by 5.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50-5λ-(-4⋅-4))+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.3.2.1.4
Multiply -(-4⋅-4).
Step 5.2.3.2.1.4.1
Multiply -4 by -4.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50-5λ-1⋅16)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.3.2.1.4.2
Multiply -1 by 16.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50-5λ-16)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50-5λ-16)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(50-5λ-16)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.3.2.2
Subtract 16 from 50.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9|5-2-λ-45|)-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.4
Evaluate |5-2-λ-45|.
Step 5.2.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(5⋅5-(-4(-2-λ))))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.4.2
Simplify the determinant.
Step 5.2.4.2.1
Simplify each term.
Step 5.2.4.2.1.1
Multiply 5 by 5.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-(-4(-2-λ))))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.4.2.1.2
Apply the distributive property.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-(-4⋅-2-4(-λ))))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.4.2.1.3
Multiply -4 by -2.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-(8-4(-λ))))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.4.2.1.4
Multiply -1 by -4.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-(8+4λ)))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.4.2.1.5
Apply the distributive property.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-1⋅8-(4λ)))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.4.2.1.6
Multiply -1 by 8.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-8-(4λ)))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.4.2.1.7
Multiply 4 by -1.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-8-4λ))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(25-8-4λ))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.4.2.2
Subtract 8 from 25.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(17-4λ))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.4.2.3
Reorder 17 and -4λ.
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)((1-λ)(λ2-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5
Simplify the determinant.
Step 5.2.5.1
Simplify each term.
Step 5.2.5.1.1
Expand (1-λ)(λ2-8λ) using the FOIL Method.
Step 5.2.5.1.1.1
Apply the distributive property.
p(λ)=(-2-λ)(1(λ2-8λ)-λ(λ2-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.1.2
Apply the distributive property.
p(λ)=(-2-λ)(1λ2+1(-8λ)-λ(λ2-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.1.3
Apply the distributive property.
p(λ)=(-2-λ)(1λ2+1(-8λ)-λ⋅λ2-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(1λ2+1(-8λ)-λ⋅λ2-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2
Simplify and combine like terms.
Step 5.2.5.1.2.1
Simplify each term.
Step 5.2.5.1.2.1.1
Multiply λ2 by 1.
p(λ)=(-2-λ)(λ2+1(-8λ)-λ⋅λ2-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2.1.2
Multiply -8λ by 1.
p(λ)=(-2-λ)(λ2-8λ-λ⋅λ2-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2.1.3
Multiply λ by λ2 by adding the exponents.
Step 5.2.5.1.2.1.3.1
Move λ2.
p(λ)=(-2-λ)(λ2-8λ-(λ2λ)-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2.1.3.2
Multiply λ2 by λ.
Step 5.2.5.1.2.1.3.2.1
Raise λ to the power of 1.
p(λ)=(-2-λ)(λ2-8λ-(λ2λ1)-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2.1.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=(-2-λ)(λ2-8λ-λ2+1-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(λ2-8λ-λ2+1-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2.1.3.3
Add 2 and 1.
p(λ)=(-2-λ)(λ2-8λ-λ3-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(λ2-8λ-λ3-λ(-8λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=(-2-λ)(λ2-8λ-λ3-1⋅-8λ⋅λ-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 5.2.5.1.2.1.5.1
Move λ.
p(λ)=(-2-λ)(λ2-8λ-λ3-1⋅-8(λ⋅λ)-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2.1.5.2
Multiply λ by λ.
p(λ)=(-2-λ)(λ2-8λ-λ3-1⋅-8λ2-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(λ2-8λ-λ3-1⋅-8λ2-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2.1.6
Multiply -1 by -8.
p(λ)=(-2-λ)(λ2-8λ-λ3+8λ2-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(λ2-8λ-λ3+8λ2-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.2.2
Add λ2 and 8λ2.
p(λ)=(-2-λ)(9λ2-8λ-λ3-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
p(λ)=(-2-λ)(9λ2-8λ-λ3-4(-5λ+34)+9(-4λ+17))-1|12496-2-λ-43510-λ|-2|121-λ965-43-410-λ|+4|121-λ465-2-λ3-45|
Step 5.2.5.1.3
Apply the distributive property.
Step 5.2.5.1.4
Multiply by .
Step 5.2.5.1.5
Multiply by .
Step 5.2.5.1.6
Apply the distributive property.
Step 5.2.5.1.7
Multiply by .
Step 5.2.5.1.8
Multiply by .
Step 5.2.5.2
Add and .
Step 5.2.5.3
Subtract from .
Step 5.2.5.4
Add and .
Step 5.2.5.5
Reorder and .
Step 5.3
Evaluate .
Step 5.3.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Step 5.3.1.1
Consider the corresponding sign chart.
Step 5.3.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 5.3.1.3
The minor for is the determinant with row and column deleted.
Step 5.3.1.4
Multiply element by its cofactor.
Step 5.3.1.5
The minor for is the determinant with row and column deleted.
Step 5.3.1.6
Multiply element by its cofactor.
Step 5.3.1.7
The minor for is the determinant with row and column deleted.
Step 5.3.1.8
Multiply element by its cofactor.
Step 5.3.1.9
Add the terms together.
Step 5.3.2
Evaluate .
Step 5.3.2.1
The determinant of a matrix can be found using the formula .
Step 5.3.2.2
Simplify the determinant.
Step 5.3.2.2.1
Simplify each term.
Step 5.3.2.2.1.1
Apply the distributive property.
Step 5.3.2.2.1.2
Multiply by .
Step 5.3.2.2.1.3
Multiply by .
Step 5.3.2.2.1.4
Multiply by .
Step 5.3.2.2.2
Subtract from .
Step 5.3.3
Evaluate .
Step 5.3.3.1
The determinant of a matrix can be found using the formula .
Step 5.3.3.2
Simplify the determinant.
Step 5.3.3.2.1
Simplify each term.
Step 5.3.3.2.1.1
Apply the distributive property.
Step 5.3.3.2.1.2
Multiply by .
Step 5.3.3.2.1.3
Multiply by .
Step 5.3.3.2.1.4
Multiply by .
Step 5.3.3.2.2
Subtract from .
Step 5.3.4
Evaluate .
Step 5.3.4.1
The determinant of a matrix can be found using the formula .
Step 5.3.4.2
Simplify the determinant.
Step 5.3.4.2.1
Simplify each term.
Step 5.3.4.2.1.1
Multiply by .
Step 5.3.4.2.1.2
Multiply by .
Step 5.3.4.2.2
Subtract from .
Step 5.3.5
Simplify the determinant.
Step 5.3.5.1
Simplify each term.
Step 5.3.5.1.1
Apply the distributive property.
Step 5.3.5.1.2
Multiply by .
Step 5.3.5.1.3
Multiply by .
Step 5.3.5.1.4
Expand using the FOIL Method.
Step 5.3.5.1.4.1
Apply the distributive property.
Step 5.3.5.1.4.2
Apply the distributive property.
Step 5.3.5.1.4.3
Apply the distributive property.
Step 5.3.5.1.5
Simplify and combine like terms.
Step 5.3.5.1.5.1
Simplify each term.
Step 5.3.5.1.5.1.1
Multiply by .
Step 5.3.5.1.5.1.2
Multiply by .
Step 5.3.5.1.5.1.3
Rewrite using the commutative property of multiplication.
Step 5.3.5.1.5.1.4
Multiply by by adding the exponents.
Step 5.3.5.1.5.1.4.1
Move .
Step 5.3.5.1.5.1.4.2
Multiply by .
Step 5.3.5.1.5.1.5
Multiply by .
Step 5.3.5.1.5.1.6
Multiply by .
Step 5.3.5.1.5.2
Subtract from .
Step 5.3.5.1.6
Multiply by .
Step 5.3.5.2
Subtract from .
Step 5.3.5.3
Subtract from .
Step 5.3.5.4
Add and .
Step 5.3.5.5
Reorder and .
Step 5.4
Evaluate .
Step 5.4.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Step 5.4.1.1
Consider the corresponding sign chart.
Step 5.4.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 5.4.1.3
The minor for is the determinant with row and column deleted.
Step 5.4.1.4
Multiply element by its cofactor.
Step 5.4.1.5
The minor for is the determinant with row and column deleted.
Step 5.4.1.6
Multiply element by its cofactor.
Step 5.4.1.7
The minor for is the determinant with row and column deleted.
Step 5.4.1.8
Multiply element by its cofactor.
Step 5.4.1.9
Add the terms together.
Step 5.4.2
Evaluate .
Step 5.4.2.1
The determinant of a matrix can be found using the formula .
Step 5.4.2.2
Simplify the determinant.
Step 5.4.2.2.1
Simplify each term.
Step 5.4.2.2.1.1
Apply the distributive property.
Step 5.4.2.2.1.2
Multiply by .
Step 5.4.2.2.1.3
Multiply by .
Step 5.4.2.2.1.4
Multiply .
Step 5.4.2.2.1.4.1
Multiply by .
Step 5.4.2.2.1.4.2
Multiply by .
Step 5.4.2.2.2
Subtract from .
Step 5.4.3
Evaluate .
Step 5.4.3.1
The determinant of a matrix can be found using the formula .
Step 5.4.3.2
Simplify the determinant.
Step 5.4.3.2.1
Simplify each term.
Step 5.4.3.2.1.1
Apply the distributive property.
Step 5.4.3.2.1.2
Multiply by .
Step 5.4.3.2.1.3
Multiply by .
Step 5.4.3.2.1.4
Multiply by .
Step 5.4.3.2.2
Add and .
Step 5.4.4
Evaluate .
Step 5.4.4.1
The determinant of a matrix can be found using the formula .
Step 5.4.4.2
Simplify the determinant.
Step 5.4.4.2.1
Simplify each term.
Step 5.4.4.2.1.1
Multiply by .
Step 5.4.4.2.1.2
Multiply by .
Step 5.4.4.2.2
Subtract from .
Step 5.4.5
Simplify the determinant.
Step 5.4.5.1
Simplify each term.
Step 5.4.5.1.1
Apply the distributive property.
Step 5.4.5.1.2
Multiply by .
Step 5.4.5.1.3
Multiply by .
Step 5.4.5.1.4
Apply the distributive property.
Step 5.4.5.1.5
Multiply by .
Step 5.4.5.1.6
Multiply .
Step 5.4.5.1.6.1
Multiply by .
Step 5.4.5.1.6.2
Multiply by .
Step 5.4.5.1.7
Expand using the FOIL Method.
Step 5.4.5.1.7.1
Apply the distributive property.
Step 5.4.5.1.7.2
Apply the distributive property.
Step 5.4.5.1.7.3
Apply the distributive property.
Step 5.4.5.1.8
Simplify and combine like terms.
Step 5.4.5.1.8.1
Simplify each term.
Step 5.4.5.1.8.1.1
Multiply by .
Step 5.4.5.1.8.1.2
Multiply by .
Step 5.4.5.1.8.1.3
Rewrite using the commutative property of multiplication.
Step 5.4.5.1.8.1.4
Multiply by by adding the exponents.
Step 5.4.5.1.8.1.4.1
Move .
Step 5.4.5.1.8.1.4.2
Multiply by .
Step 5.4.5.1.8.1.5
Move to the left of .
Step 5.4.5.1.8.2
Add and .
Step 5.4.5.1.9
Multiply by .
Step 5.4.5.2
Add and .
Step 5.4.5.3
Subtract from .
Step 5.4.5.4
Subtract from .
Step 5.4.5.5
Reorder and .
Step 5.5
Evaluate .
Step 5.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Step 5.5.1.1
Consider the corresponding sign chart.
Step 5.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 5.5.1.3
The minor for is the determinant with row and column deleted.
Step 5.5.1.4
Multiply element by its cofactor.
Step 5.5.1.5
The minor for is the determinant with row and column deleted.
Step 5.5.1.6
Multiply element by its cofactor.
Step 5.5.1.7
The minor for is the determinant with row and column deleted.
Step 5.5.1.8
Multiply element by its cofactor.
Step 5.5.1.9
Add the terms together.
Step 5.5.2
Evaluate .
Step 5.5.2.1
The determinant of a matrix can be found using the formula .
Step 5.5.2.2
Simplify the determinant.
Step 5.5.2.2.1
Simplify each term.
Step 5.5.2.2.1.1
Multiply by .
Step 5.5.2.2.1.2
Apply the distributive property.
Step 5.5.2.2.1.3
Multiply by .
Step 5.5.2.2.1.4
Multiply by .
Step 5.5.2.2.1.5
Apply the distributive property.
Step 5.5.2.2.1.6
Multiply by .
Step 5.5.2.2.1.7
Multiply by .
Step 5.5.2.2.2
Subtract from .
Step 5.5.2.2.3
Reorder and .
Step 5.5.3
Evaluate .
Step 5.5.3.1
The determinant of a matrix can be found using the formula .
Step 5.5.3.2
Simplify the determinant.
Step 5.5.3.2.1
Simplify each term.
Step 5.5.3.2.1.1
Multiply by .
Step 5.5.3.2.1.2
Apply the distributive property.
Step 5.5.3.2.1.3
Multiply by .
Step 5.5.3.2.1.4
Multiply by .
Step 5.5.3.2.2
Add and .
Step 5.5.3.2.3
Reorder and .
Step 5.5.4
Evaluate .
Step 5.5.4.1
The determinant of a matrix can be found using the formula .
Step 5.5.4.2
Simplify the determinant.
Step 5.5.4.2.1
Simplify each term.
Step 5.5.4.2.1.1
Multiply by .
Step 5.5.4.2.1.2
Multiply by .
Step 5.5.4.2.2
Subtract from .
Step 5.5.5
Simplify the determinant.
Step 5.5.5.1
Simplify each term.
Step 5.5.5.1.1
Apply the distributive property.
Step 5.5.5.1.2
Multiply by .
Step 5.5.5.1.3
Multiply by .
Step 5.5.5.1.4
Apply the distributive property.
Step 5.5.5.1.5
Multiply by .
Step 5.5.5.1.6
Multiply .
Step 5.5.5.1.6.1
Multiply by .
Step 5.5.5.1.6.2
Multiply by .
Step 5.5.5.1.7
Expand using the FOIL Method.
Step 5.5.5.1.7.1
Apply the distributive property.
Step 5.5.5.1.7.2
Apply the distributive property.
Step 5.5.5.1.7.3
Apply the distributive property.
Step 5.5.5.1.8
Simplify and combine like terms.
Step 5.5.5.1.8.1
Simplify each term.
Step 5.5.5.1.8.1.1
Multiply by .
Step 5.5.5.1.8.1.2
Multiply by .
Step 5.5.5.1.8.1.3
Rewrite using the commutative property of multiplication.
Step 5.5.5.1.8.1.4
Multiply by by adding the exponents.
Step 5.5.5.1.8.1.4.1
Move .
Step 5.5.5.1.8.1.4.2
Multiply by .
Step 5.5.5.1.8.1.5
Move to the left of .
Step 5.5.5.1.8.2
Add and .
Step 5.5.5.1.9
Multiply by .
Step 5.5.5.2
Add and .
Step 5.5.5.3
Subtract from .
Step 5.5.5.4
Subtract from .
Step 5.5.5.5
Reorder and .
Step 5.6
Simplify the determinant.
Step 5.6.1
Simplify each term.
Step 5.6.1.1
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.6.1.2
Simplify each term.
Step 5.6.1.2.1
Multiply by .
Step 5.6.1.2.2
Multiply by .
Step 5.6.1.2.3
Multiply by .
Step 5.6.1.2.4
Multiply by .
Step 5.6.1.2.5
Rewrite using the commutative property of multiplication.
Step 5.6.1.2.6
Multiply by by adding the exponents.
Step 5.6.1.2.6.1
Move .
Step 5.6.1.2.6.2
Multiply by .
Step 5.6.1.2.6.2.1
Raise to the power of .
Step 5.6.1.2.6.2.2
Use the power rule to combine exponents.
Step 5.6.1.2.6.3
Add and .
Step 5.6.1.2.7
Multiply by .
Step 5.6.1.2.8
Multiply by .
Step 5.6.1.2.9
Rewrite using the commutative property of multiplication.
Step 5.6.1.2.10
Multiply by by adding the exponents.
Step 5.6.1.2.10.1
Move .
Step 5.6.1.2.10.2
Multiply by .
Step 5.6.1.2.10.2.1
Raise to the power of .
Step 5.6.1.2.10.2.2
Use the power rule to combine exponents.
Step 5.6.1.2.10.3
Add and .
Step 5.6.1.2.11
Multiply by .
Step 5.6.1.2.12
Rewrite using the commutative property of multiplication.
Step 5.6.1.2.13
Multiply by by adding the exponents.
Step 5.6.1.2.13.1
Move .
Step 5.6.1.2.13.2
Multiply by .
Step 5.6.1.2.14
Multiply by .
Step 5.6.1.2.15
Multiply by .
Step 5.6.1.3
Subtract from .
Step 5.6.1.4
Add and .
Step 5.6.1.5
Subtract from .
Step 5.6.1.6
Apply the distributive property.
Step 5.6.1.7
Simplify.
Step 5.6.1.7.1
Multiply by .
Step 5.6.1.7.2
Multiply by .
Step 5.6.1.7.3
Multiply by .
Step 5.6.1.8
Apply the distributive property.
Step 5.6.1.9
Simplify.
Step 5.6.1.9.1
Multiply by .
Step 5.6.1.9.2
Multiply by .
Step 5.6.1.9.3
Multiply by .
Step 5.6.1.10
Apply the distributive property.
Step 5.6.1.11
Simplify.
Step 5.6.1.11.1
Multiply by .
Step 5.6.1.11.2
Multiply by .
Step 5.6.1.11.3
Multiply by .
Step 5.6.2
Combine the opposite terms in .
Step 5.6.2.1
Add and .
Step 5.6.2.2
Add and .
Step 5.6.3
Add and .
Step 5.6.4
Add and .
Step 5.6.5
Subtract from .
Step 5.6.6
Subtract from .
Step 5.6.7
Subtract from .
Step 5.6.8
Add and .
Step 5.6.9
Add and .
Step 5.6.10
Move .
Step 5.6.11
Move .
Step 5.6.12
Reorder and .
Step 6
Set the characteristic polynomial equal to to find the eigenvalues .
Step 7
Step 7.1
Factor the left side of the equation.
Step 7.1.1
Factor using the rational roots test.
Step 7.1.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 7.1.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 7.1.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 7.1.1.3.1
Substitute into the polynomial.
Step 7.1.1.3.2
Raise to the power of .
Step 7.1.1.3.3
Raise to the power of .
Step 7.1.1.3.4
Multiply by .
Step 7.1.1.3.5
Subtract from .
Step 7.1.1.3.6
Raise to the power of .
Step 7.1.1.3.7
Multiply by .
Step 7.1.1.3.8
Add and .
Step 7.1.1.3.9
Multiply by .
Step 7.1.1.3.10
Subtract from .
Step 7.1.1.3.11
Add and .
Step 7.1.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 7.1.1.5
Divide by .
Step 7.1.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | - | + | - | + |
Step 7.1.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | - | + | - | + |
Step 7.1.1.5.3
Multiply the new quotient term by the divisor.
- | - | + | - | + | |||||||||
+ | - |
Step 7.1.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | - | + | - | + | |||||||||
- | + |
Step 7.1.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- |
Step 7.1.1.5.6
Pull the next terms from the original dividend down into the current dividend.
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + |
Step 7.1.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + |
Step 7.1.1.5.8
Multiply the new quotient term by the divisor.
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
- | + |
Step 7.1.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - |
Step 7.1.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ |
Step 7.1.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - |
Step 7.1.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - |
Step 7.1.1.5.13
Multiply the new quotient term by the divisor.
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
+ | - |
Step 7.1.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + |
Step 7.1.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- |
Step 7.1.1.5.16
Pull the next terms from the original dividend down into the current dividend.
- | + | ||||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + |
Step 7.1.1.5.17
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + |
Step 7.1.1.5.18
Multiply the new quotient term by the divisor.
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
- | + |
Step 7.1.1.5.19
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - |
Step 7.1.1.5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | - | |||||||||||
- | - | + | - | + | |||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
+ | - | ||||||||||||
- | + | ||||||||||||
- | + | ||||||||||||
+ | - | ||||||||||||
Step 7.1.1.5.21
Since the remander is , the final answer is the quotient.
Step 7.1.1.6
Write as a set of factors.
Step 7.1.2
Factor using the rational roots test.
Step 7.1.2.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 7.1.2.2
Find every combination of . These are the possible roots of the polynomial function.
Step 7.1.2.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 7.1.2.3.1
Substitute into the polynomial.
Step 7.1.2.3.2
Raise to the power of .
Step 7.1.2.3.3
Raise to the power of .
Step 7.1.2.3.4
Multiply by .
Step 7.1.2.3.5
Subtract from .
Step 7.1.2.3.6
Multiply by .
Step 7.1.2.3.7
Add and .
Step 7.1.2.3.8
Subtract from .
Step 7.1.2.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 7.1.2.5
Divide by .
Step 7.1.2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | - | + | - |
Step 7.1.2.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | - | + | - |
Step 7.1.2.5.3
Multiply the new quotient term by the divisor.
- | - | + | - | ||||||||
+ | - |
Step 7.1.2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | - | + | - | ||||||||
- | + |
Step 7.1.2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | - | + | - | ||||||||
- | + | ||||||||||
- |
Step 7.1.2.5.6
Pull the next terms from the original dividend down into the current dividend.
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Step 7.1.2.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Step 7.1.2.5.8
Multiply the new quotient term by the divisor.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Step 7.1.2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Step 7.1.2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
Step 7.1.2.5.11
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Step 7.1.2.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Step 7.1.2.5.13
Multiply the new quotient term by the divisor.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Step 7.1.2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Step 7.1.2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Step 7.1.2.5.16
Since the remander is , the final answer is the quotient.
Step 7.1.2.6
Write as a set of factors.
Step 7.1.3
Factor using the perfect square rule.
Step 7.1.3.1
Rewrite as .
Step 7.1.3.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 7.1.3.3
Rewrite the polynomial.
Step 7.1.3.4
Factor using the perfect square trinomial rule , where and .
Step 7.1.4
Combine like factors.
Step 7.1.4.1
Raise to the power of .
Step 7.1.4.2
Use the power rule to combine exponents.
Step 7.1.4.3
Add and .
Step 7.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 7.3
Set equal to and solve for .
Step 7.3.1
Set equal to .
Step 7.3.2
Add to both sides of the equation.
Step 7.4
Set equal to and solve for .
Step 7.4.1
Set equal to .
Step 7.4.2
Solve for .
Step 7.4.2.1
Set the equal to .
Step 7.4.2.2
Add to both sides of the equation.
Step 7.5
The final solution is all the values that make true.