Linear Algebra Examples

Find the Characteristic Equation [[-2,-4,2,-2],[1,5,5,-8],[-1,0,7,-11],[2,7,3,-3]]
[-2-42-2155-8-107-11273-3]
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI4)
Step 2
The identity matrix or unit matrix of size 4 is the 4×4 square matrix with ones on the main diagonal and zeros elsewhere.
[1000010000100001]
Step 3
Substitute the known values into p(λ)=determinant(A-λI4).
Tap for more steps...
Step 3.1
Substitute [-2-42-2155-8-107-11273-3] for A.
p(λ)=determinant([-2-42-2155-8-107-11273-3]-λI4)
Step 3.2
Substitute [1000010000100001] for I4.
p(λ)=determinant([-2-42-2155-8-107-11273-3]-λ[1000010000100001])
p(λ)=determinant([-2-42-2155-8-107-11273-3]-λ[1000010000100001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.2
Multiply -λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0λ-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.3
Multiply -λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ00λ-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ00-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ00-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.4
Multiply -λ0.
Tap for more steps...
Step 4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ000λ-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ000-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ000-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.5
Multiply -λ0.
Tap for more steps...
Step 4.1.2.5.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000λ-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.5.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.6
Multiply -1 by 1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.7
Multiply -λ0.
Tap for more steps...
Step 4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0λ-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.8
Multiply -λ0.
Tap for more steps...
Step 4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ00λ-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ00-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ00-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.9
Multiply -λ0.
Tap for more steps...
Step 4.1.2.9.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ000λ-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.9.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ000-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ000-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.10
Multiply -λ0.
Tap for more steps...
Step 4.1.2.10.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000λ-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.10.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ1-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.11
Multiply -1 by 1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.12
Multiply -λ0.
Tap for more steps...
Step 4.1.2.12.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0λ-λ0-λ0-λ0-λ1])
Step 4.1.2.12.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0-λ0-λ0-λ0-λ1])
Step 4.1.2.13
Multiply -λ0.
Tap for more steps...
Step 4.1.2.13.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ00λ-λ0-λ0-λ1])
Step 4.1.2.13.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ00-λ0-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ00-λ0-λ0-λ1])
Step 4.1.2.14
Multiply -λ0.
Tap for more steps...
Step 4.1.2.14.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ000λ-λ0-λ1])
Step 4.1.2.14.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ000-λ0-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ000-λ0-λ1])
Step 4.1.2.15
Multiply -λ0.
Tap for more steps...
Step 4.1.2.15.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000λ-λ1])
Step 4.1.2.15.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000-λ1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000-λ1])
Step 4.1.2.16
Multiply -1 by 1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[-2-λ-4+02+0-2+01+05-λ5+0-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add -4 and 0.
p(λ)=determinant[-2-λ-42+0-2+01+05-λ5+0-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.2
Add 2 and 0.
p(λ)=determinant[-2-λ-42-2+01+05-λ5+0-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.3
Add -2 and 0.
p(λ)=determinant[-2-λ-42-21+05-λ5+0-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.4
Add 1 and 0.
p(λ)=determinant[-2-λ-42-215-λ5+0-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.5
Add 5 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.6
Add -8 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.7
Add -1 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-10+07-λ-11+02+07+03+0-3-λ]
Step 4.3.8
Add 0 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-11+02+07+03+0-3-λ]
Step 4.3.9
Add -11 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-112+07+03+0-3-λ]
Step 4.3.10
Add 2 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-1127+03+0-3-λ]
Step 4.3.11
Add 7 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-11273+0-3-λ]
Step 4.3.12
Add 3 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-11273-3-λ]
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-11273-3-λ]
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-11273-3-λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Tap for more steps...
Step 5.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|15-8-17-λ-1123-3-λ|
Step 5.1.4
Multiply element a12 by its cofactor.
4|15-8-17-λ-1123-3-λ|
Step 5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|-2-λ2-2-17-λ-1123-3-λ|
Step 5.1.6
Multiply element a22 by its cofactor.
(5-λ)|-2-λ2-2-17-λ-1123-3-λ|
Step 5.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-2-λ2-215-823-3-λ|
Step 5.1.8
Multiply element a32 by its cofactor.
0|-2-λ2-215-823-3-λ|
Step 5.1.9
The minor for a42 is the determinant with row 4 and column 2 deleted.
|-2-λ2-215-8-17-λ-11|
Step 5.1.10
Multiply element a42 by its cofactor.
7|-2-λ2-215-8-17-λ-11|
Step 5.1.11
Add the terms together.
p(λ)=4|15-8-17-λ-1123-3-λ|+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0|-2-λ2-215-823-3-λ|+7|-2-λ2-215-8-17-λ-11|
p(λ)=4|15-8-17-λ-1123-3-λ|+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0|-2-λ2-215-823-3-λ|+7|-2-λ2-215-8-17-λ-11|
Step 5.2
Multiply 0 by |-2-λ2-215-823-3-λ|.
p(λ)=4|15-8-17-λ-1123-3-λ|+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3
Evaluate |15-8-17-λ-1123-3-λ|.
Tap for more steps...
Step 5.3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Tap for more steps...
Step 5.3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.3.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|5-83-3-λ|
Step 5.3.1.4
Multiply element a21 by its cofactor.
1|5-83-3-λ|
Step 5.3.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1-82-3-λ|
Step 5.3.1.6
Multiply element a22 by its cofactor.
(7-λ)|1-82-3-λ|
Step 5.3.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1523|
Step 5.3.1.8
Multiply element a23 by its cofactor.
11|1523|
Step 5.3.1.9
Add the terms together.
p(λ)=4(1|5-83-3-λ|+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1|5-83-3-λ|+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2
Evaluate |5-83-3-λ|.
Tap for more steps...
Step 5.3.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(1(5(-3-λ)-3-8)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2.2
Simplify the determinant.
Tap for more steps...
Step 5.3.2.2.1
Simplify each term.
Tap for more steps...
Step 5.3.2.2.1.1
Apply the distributive property.
p(λ)=4(1(5-3+5(-λ)-3-8)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2.2.1.2
Multiply 5 by -3.
p(λ)=4(1(-15+5(-λ)-3-8)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2.2.1.3
Multiply -1 by 5.
p(λ)=4(1(-15-5λ-3-8)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2.2.1.4
Multiply -3 by -8.
p(λ)=4(1(-15-5λ+24)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-15-5λ+24)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2.2.2
Add -15 and 24.
p(λ)=4(1(-5λ+9)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.3
Evaluate |1-82-3-λ|.
Tap for more steps...
Step 5.3.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(1(-5λ+9)+(7-λ)(1(-3-λ)-2-8)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.3.2
Simplify the determinant.
Tap for more steps...
Step 5.3.3.2.1
Simplify each term.
Tap for more steps...
Step 5.3.3.2.1.1
Multiply -3-λ by 1.
p(λ)=4(1(-5λ+9)+(7-λ)(-3-λ-2-8)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.3.2.1.2
Multiply -2 by -8.
p(λ)=4(1(-5λ+9)+(7-λ)(-3-λ+16)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-3-λ+16)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.3.2.2
Add -3 and 16.
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.4
Evaluate |1523|.
Tap for more steps...
Step 5.3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11(13-25))+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.4.2
Simplify the determinant.
Tap for more steps...
Step 5.3.4.2.1
Simplify each term.
Tap for more steps...
Step 5.3.4.2.1.1
Multiply 3 by 1.
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11(3-25))+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.4.2.1.2
Multiply -2 by 5.
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11(3-10))+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11(3-10))+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.4.2.2
Subtract 10 from 3.
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5
Simplify the determinant.
Tap for more steps...
Step 5.3.5.1
Simplify each term.
Tap for more steps...
Step 5.3.5.1.1
Multiply -5λ+9 by 1.
p(λ)=4(-5λ+9+(7-λ)(-λ+13)+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.2
Expand (7-λ)(-λ+13) using the FOIL Method.
Tap for more steps...
Step 5.3.5.1.2.1
Apply the distributive property.
p(λ)=4(-5λ+9+7(-λ+13)-λ(-λ+13)+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.2.2
Apply the distributive property.
p(λ)=4(-5λ+9+7(-λ)+713-λ(-λ+13)+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.2.3
Apply the distributive property.
p(λ)=4(-5λ+9+7(-λ)+713-λ(-λ)-λ13+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(-5λ+9+7(-λ)+713-λ(-λ)-λ13+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3
Simplify and combine like terms.
Tap for more steps...
Step 5.3.5.1.3.1
Simplify each term.
Tap for more steps...
Step 5.3.5.1.3.1.1
Multiply -1 by 7.
p(λ)=4(-5λ+9-7λ+713-λ(-λ)-λ13+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.2
Multiply 7 by 13.
p(λ)=4(-5λ+9-7λ+91-λ(-λ)-λ13+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.3
Rewrite using the commutative property of multiplication.
p(λ)=4(-5λ+9-7λ+91-1-1λλ-λ13+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.4
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.3.5.1.3.1.4.1
Move λ.
p(λ)=4(-5λ+9-7λ+91-1-1(λλ)-λ13+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.4.2
Multiply λ by λ.
p(λ)=4(-5λ+9-7λ+91-1-1λ2-λ13+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(-5λ+9-7λ+91-1-1λ2-λ13+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.5
Multiply -1 by -1.
p(λ)=4(-5λ+9-7λ+91+1λ2-λ13+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.6
Multiply λ2 by 1.
p(λ)=4(-5λ+9-7λ+91+λ2-λ13+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.7
Multiply 13 by -1.
p(λ)=4(-5λ+9-7λ+91+λ2-13λ+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(-5λ+9-7λ+91+λ2-13λ+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.2
Subtract 13λ from -7λ.
p(λ)=4(-5λ+9-20λ+91+λ2+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(-5λ+9-20λ+91+λ2+11-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.4
Multiply 11 by -7.
p(λ)=4(-5λ+9-20λ+91+λ2-77)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(-5λ+9-20λ+91+λ2-77)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.2
Subtract 20λ from -5λ.
p(λ)=4(-25λ+9+91+λ2-77)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.3
Add 9 and 91.
p(λ)=4(-25λ+100+λ2-77)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.4
Subtract 77 from 100.
p(λ)=4(-25λ+λ2+23)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.5
Reorder -25λ and λ2.
p(λ)=4(λ2-25λ+23)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4
Evaluate |-2-λ2-2-17-λ-1123-3-λ|.
Tap for more steps...
Step 5.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 5.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|7-λ-113-3-λ|
Step 5.4.1.4
Multiply element a11 by its cofactor.
(-2-λ)|7-λ-113-3-λ|
Step 5.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-1-112-3-λ|
Step 5.4.1.6
Multiply element a12 by its cofactor.
-2|-1-112-3-λ|
Step 5.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-17-λ23|
Step 5.4.1.8
Multiply element a13 by its cofactor.
-2|-17-λ23|
Step 5.4.1.9
Add the terms together.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)|7-λ-113-3-λ|-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)|7-λ-113-3-λ|-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2
Evaluate |7-λ-113-3-λ|.
Tap for more steps...
Step 5.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)((7-λ)(-3-λ)-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2
Simplify the determinant.
Tap for more steps...
Step 5.4.2.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.2.1.1
Expand (7-λ)(-3-λ) using the FOIL Method.
Tap for more steps...
Step 5.4.2.2.1.1.1
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(7(-3-λ)-λ(-3-λ)-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.1.2
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(7-3+7(-λ)-λ(-3-λ)-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.1.3
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(7-3+7(-λ)-λ-3-λ(-λ)-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(7-3+7(-λ)-λ-3-λ(-λ)-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.4.2.2.1.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.2.1.2.1.1
Multiply 7 by -3.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21+7(-λ)-λ-3-λ(-λ)-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.2
Multiply -1 by 7.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ-λ-3-λ(-λ)-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.3
Multiply -3 by -1.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ-λ(-λ)-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ-1-1λλ-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.4.2.2.1.2.1.5.1
Move λ.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ-1-1(λλ)-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ-1-1λ2-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ-1-1λ2-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.6
Multiply -1 by -1.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ+1λ2-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ+λ2-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ+λ2-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.2
Add -7λ and 3λ.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-4λ+λ2-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-4λ+λ2-3-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.3
Multiply -3 by -11.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-4λ+λ2+33)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-4λ+λ2+33)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.2
Add -21 and 33.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-4λ+λ2+12)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.3
Reorder -4λ and λ2.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3
Evaluate |-1-112-3-λ|.
Tap for more steps...
Step 5.4.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(-(-3-λ)-2-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2
Simplify the determinant.
Tap for more steps...
Step 5.4.3.2.1
Simplify each term.
Tap for more steps...
Step 5.4.3.2.1.1
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(--3--λ-2-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2.1.2
Multiply -1 by -3.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3--λ-2-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2.1.3
Multiply --λ.
Tap for more steps...
Step 5.4.3.2.1.3.1
Multiply -1 by -1.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3+1λ-2-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2.1.3.2
Multiply λ by 1.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3+λ-2-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3+λ-2-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2.1.4
Multiply -2 by -11.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3+λ+22)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3+λ+22)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2.2
Add 3 and 22.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4
Evaluate |-17-λ23|.
Tap for more steps...
Step 5.4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-13-2(7-λ)))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2
Simplify the determinant.
Tap for more steps...
Step 5.4.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.4.2.1.1
Multiply -1 by 3.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-3-2(7-λ)))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2.1.2
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-3-27-2(-λ)))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2.1.3
Multiply -2 by 7.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-3-14-2(-λ)))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2.1.4
Multiply -1 by -2.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-3-14+2λ))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-3-14+2λ))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2.2
Subtract 14 from -3.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-17+2λ))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2.3
Reorder -17 and 2λ.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5
Simplify the determinant.
Tap for more steps...
Step 5.4.5.1
Simplify each term.
Tap for more steps...
Step 5.4.5.1.1
Expand (-2-λ)(λ2-4λ+12) by multiplying each term in the first expression by each term in the second expression.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2-2(-4λ)-212-λλ2-λ(-4λ)-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2
Simplify each term.
Tap for more steps...
Step 5.4.5.1.2.1
Multiply -4 by -2.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-212-λλ2-λ(-4λ)-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.2
Multiply -2 by 12.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λλ2-λ(-4λ)-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.3
Multiply λ by λ2 by adding the exponents.
Tap for more steps...
Step 5.4.5.1.2.3.1
Move λ2.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-(λ2λ)-λ(-4λ)-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.3.2
Multiply λ2 by λ.
Tap for more steps...
Step 5.4.5.1.2.3.2.1
Raise λ to the power of 1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-(λ2λ1)-λ(-4λ)-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ2+1-λ(-4λ)-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ2+1-λ(-4λ)-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.3.3
Add 2 and 1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-λ(-4λ)-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-λ(-4λ)-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.4
Rewrite using the commutative property of multiplication.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-1-4λλ-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.4.5.1.2.5.1
Move λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-1-4(λλ)-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.5.2
Multiply λ by λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-1-4λ2-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-1-4λ2-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.6
Multiply -1 by -4.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3+4λ2-λ12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.7
Multiply 12 by -1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3+4λ2-12λ-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3+4λ2-12λ-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.3
Add -2λ2 and 4λ2.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2+8λ-24-λ3-12λ-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.4
Subtract 12λ from 8λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.5
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-225-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.6
Multiply -2 by 25.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-50-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.7
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-50-2(2λ)-2-17)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.8
Multiply 2 by -2.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-50-4λ-2-17)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.9
Multiply -2 by -17.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-50-4λ+34)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-50-4λ+34)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.2
Subtract 2λ from -4λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-6λ-24-λ3-50-4λ+34)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.3
Subtract 4λ from -6λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-10λ-24-λ3-50+34)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.4
Subtract 50 from -24.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-10λ-λ3-74+34)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.5
Add -74 and 34.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-10λ-λ3-40)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.6
Move -10λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-λ3-10λ-40)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.7
Reorder 2λ2 and -λ3.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.5
Evaluate |-2-λ2-215-8-17-λ-11|.
Tap for more steps...
Step 5.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 5.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5-87-λ-11|
Step 5.5.1.4
Multiply element a11 by its cofactor.
(-2-λ)|5-87-λ-11|
Step 5.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-8-1-11|
Step 5.5.1.6
Multiply element a12 by its cofactor.
-2|1-8-1-11|
Step 5.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|15-17-λ|
Step 5.5.1.8
Multiply element a13 by its cofactor.
-2|15-17-λ|
Step 5.5.1.9
Add the terms together.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)|5-87-λ-11|-2|1-8-1-11|-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)|5-87-λ-11|-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2
Evaluate |5-87-λ-11|.
Tap for more steps...
Step 5.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(5-11-(7-λ)-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2
Simplify the determinant.
Tap for more steps...
Step 5.5.2.2.1
Simplify each term.
Tap for more steps...
Step 5.5.2.2.1.1
Multiply 5 by -11.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55-(7-λ)-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.2
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+(-17--λ)-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.3
Multiply -1 by 7.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+(-7--λ)-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.4
Multiply --λ.
Tap for more steps...
Step 5.5.2.2.1.4.1
Multiply -1 by -1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+(-7+1λ)-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.4.2
Multiply λ by 1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+(-7+λ)-8)-2|1-8-1-11|-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+(-7+λ)-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.5
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55-7-8+λ-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.6
Multiply -7 by -8.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+56+λ-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.7
Move -8 to the left of λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+56-8λ)-2|1-8-1-11|-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+56-8λ)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.2
Add -55 and 56.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(1-8λ)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.3
Reorder 1 and -8λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2|1-8-1-11|-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2|1-8-1-11|-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.3
Evaluate |1-8-1-11|.
Tap for more steps...
Step 5.5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(1-11---8)-2|15-17-λ|)
Step 5.5.3.2
Simplify the determinant.
Tap for more steps...
Step 5.5.3.2.1
Simplify each term.
Tap for more steps...
Step 5.5.3.2.1.1
Multiply -11 by 1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(-11---8)-2|15-17-λ|)
Step 5.5.3.2.1.2
Multiply ---8.
Tap for more steps...
Step 5.5.3.2.1.2.1
Multiply -1 by -8.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(-11-18)-2|15-17-λ|)
Step 5.5.3.2.1.2.2
Multiply -1 by 8.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(-11-8)-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(-11-8)-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(-11-8)-2|15-17-λ|)
Step 5.5.3.2.2
Subtract 8 from -11.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2-19-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2-19-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2-19-2|15-17-λ|)
Step 5.5.4
Evaluate |15-17-λ|.
Tap for more steps...
Step 5.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2-19-2(1(7-λ)-(-15)))
Step 5.5.4.2
Simplify the determinant.
Tap for more steps...
Step 5.5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.5.4.2.1.1
Multiply 7-λ by 1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2-19-2(7-λ-(-15)))
Step 5.5.4.2.1.2
Multiply -(-15).
Tap for more steps...
Step 5.5.4.2.1.2.1
Multiply -1 by 5.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2-19-2(7-λ--5))
Step 5.5.4.2.1.2.2
Multiply -1 by -5.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2-19-2(7-λ+5))
Step 5.5.4.2.2
Add and .
Step 5.5.5
Simplify the determinant.
Tap for more steps...
Step 5.5.5.1
Simplify each term.
Tap for more steps...
Step 5.5.5.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 5.5.5.1.1.1
Apply the distributive property.
Step 5.5.5.1.1.2
Apply the distributive property.
Step 5.5.5.1.1.3
Apply the distributive property.
Step 5.5.5.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.5.5.1.2.1
Simplify each term.
Tap for more steps...
Step 5.5.5.1.2.1.1
Multiply by .
Step 5.5.5.1.2.1.2
Multiply by .
Step 5.5.5.1.2.1.3
Rewrite using the commutative property of multiplication.
Step 5.5.5.1.2.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 5.5.5.1.2.1.4.1
Move .
Step 5.5.5.1.2.1.4.2
Multiply by .
Step 5.5.5.1.2.1.5
Multiply by .
Step 5.5.5.1.2.1.6
Multiply by .
Step 5.5.5.1.2.2
Subtract from .
Step 5.5.5.1.3
Multiply by .
Step 5.5.5.1.4
Apply the distributive property.
Step 5.5.5.1.5
Multiply by .
Step 5.5.5.1.6
Multiply by .
Step 5.5.5.2
Add and .
Step 5.5.5.3
Add and .
Step 5.5.5.4
Subtract from .
Step 5.5.5.5
Reorder and .
Step 5.6
Simplify the determinant.
Tap for more steps...
Step 5.6.1
Add and .
Step 5.6.2
Simplify each term.
Tap for more steps...
Step 5.6.2.1
Apply the distributive property.
Step 5.6.2.2
Simplify.
Tap for more steps...
Step 5.6.2.2.1
Multiply by .
Step 5.6.2.2.2
Multiply by .
Step 5.6.2.3
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.6.2.4
Simplify each term.
Tap for more steps...
Step 5.6.2.4.1
Multiply by .
Step 5.6.2.4.2
Multiply by .
Step 5.6.2.4.3
Multiply by .
Step 5.6.2.4.4
Multiply by .
Step 5.6.2.4.5
Rewrite using the commutative property of multiplication.
Step 5.6.2.4.6
Multiply by by adding the exponents.
Tap for more steps...
Step 5.6.2.4.6.1
Move .
Step 5.6.2.4.6.2
Multiply by .
Tap for more steps...
Step 5.6.2.4.6.2.1
Raise to the power of .
Step 5.6.2.4.6.2.2
Use the power rule to combine exponents.
Step 5.6.2.4.6.3
Add and .
Step 5.6.2.4.7
Multiply by .
Step 5.6.2.4.8
Multiply by .
Step 5.6.2.4.9
Rewrite using the commutative property of multiplication.
Step 5.6.2.4.10
Multiply by by adding the exponents.
Tap for more steps...
Step 5.6.2.4.10.1
Move .
Step 5.6.2.4.10.2
Multiply by .
Tap for more steps...
Step 5.6.2.4.10.2.1
Raise to the power of .
Step 5.6.2.4.10.2.2
Use the power rule to combine exponents.
Step 5.6.2.4.10.3
Add and .
Step 5.6.2.4.11
Multiply by .
Step 5.6.2.4.12
Rewrite using the commutative property of multiplication.
Step 5.6.2.4.13
Multiply by by adding the exponents.
Tap for more steps...
Step 5.6.2.4.13.1
Move .
Step 5.6.2.4.13.2
Multiply by .
Step 5.6.2.4.14
Multiply by .
Step 5.6.2.4.15
Multiply by .
Step 5.6.2.5
Subtract from .
Step 5.6.2.6
Add and .
Step 5.6.2.7
Add and .
Step 5.6.2.8
Apply the distributive property.
Step 5.6.2.9
Simplify.
Tap for more steps...
Step 5.6.2.9.1
Multiply by .
Step 5.6.2.9.2
Multiply by .
Step 5.6.2.9.3
Multiply by .
Step 5.6.3
Add and .
Step 5.6.4
Add and .
Step 5.6.5
Subtract from .
Step 5.6.6
Add and .
Step 5.6.7
Subtract from .
Step 5.6.8
Add and .
Step 5.6.9
Move .
Step 5.6.10
Move .
Step 5.6.11
Reorder and .