Enter a problem...
Linear Algebra Examples
[-2-42-2155-8-107-11273-3]
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI4)
Step 2
The identity matrix or unit matrix of size 4 is the 4×4 square matrix with ones on the main diagonal and zeros elsewhere.
[1000010000100001]
Step 3
Step 3.1
Substitute [-2-42-2155-8-107-11273-3] for A.
p(λ)=determinant([-2-42-2155-8-107-11273-3]-λI4)
Step 3.2
Substitute [1000010000100001] for I4.
p(λ)=determinant([-2-42-2155-8-107-11273-3]-λ[1000010000100001])
p(λ)=determinant([-2-42-2155-8-107-11273-3]-λ[1000010000100001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2
Multiply -λ⋅0.
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0.
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ00λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4
Multiply -λ⋅0.
Step 4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ000λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.5
Multiply -λ⋅0.
Step 4.1.2.5.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.5.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6
Multiply -1 by 1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.7
Multiply -λ⋅0.
Step 4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.8
Multiply -λ⋅0.
Step 4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ00λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.9
Multiply -λ⋅0.
Step 4.1.2.9.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ000λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.9.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.10
Multiply -λ⋅0.
Step 4.1.2.10.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.10.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.11
Multiply -1 by 1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.12
Multiply -λ⋅0.
Step 4.1.2.12.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.12.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.13
Multiply -λ⋅0.
Step 4.1.2.13.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ00λ-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.13.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.14
Multiply -λ⋅0.
Step 4.1.2.14.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ000λ-λ⋅0-λ⋅1])
Step 4.1.2.14.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ000-λ⋅0-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ000-λ⋅0-λ⋅1])
Step 4.1.2.15
Multiply -λ⋅0.
Step 4.1.2.15.1
Multiply 0 by -1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000λ-λ⋅1])
Step 4.1.2.15.2
Multiply 0 by λ.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000-λ⋅1])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000-λ⋅1])
Step 4.1.2.16
Multiply -1 by 1.
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([-2-42-2155-8-107-11273-3]+[-λ0000-λ0000-λ0000-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[-2-λ-4+02+0-2+01+05-λ5+0-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add -4 and 0.
p(λ)=determinant[-2-λ-42+0-2+01+05-λ5+0-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.2
Add 2 and 0.
p(λ)=determinant[-2-λ-42-2+01+05-λ5+0-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.3
Add -2 and 0.
p(λ)=determinant[-2-λ-42-21+05-λ5+0-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.4
Add 1 and 0.
p(λ)=determinant[-2-λ-42-215-λ5+0-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.5
Add 5 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8+0-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.6
Add -8 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-1+00+07-λ-11+02+07+03+0-3-λ]
Step 4.3.7
Add -1 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-10+07-λ-11+02+07+03+0-3-λ]
Step 4.3.8
Add 0 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-11+02+07+03+0-3-λ]
Step 4.3.9
Add -11 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-112+07+03+0-3-λ]
Step 4.3.10
Add 2 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-1127+03+0-3-λ]
Step 4.3.11
Add 7 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-11273+0-3-λ]
Step 4.3.12
Add 3 and 0.
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-11273-3-λ]
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-11273-3-λ]
p(λ)=determinant[-2-λ-42-215-λ5-8-107-λ-11273-3-λ]
Step 5
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|15-8-17-λ-1123-3-λ|
Step 5.1.4
Multiply element a12 by its cofactor.
4|15-8-17-λ-1123-3-λ|
Step 5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|-2-λ2-2-17-λ-1123-3-λ|
Step 5.1.6
Multiply element a22 by its cofactor.
(5-λ)|-2-λ2-2-17-λ-1123-3-λ|
Step 5.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-2-λ2-215-823-3-λ|
Step 5.1.8
Multiply element a32 by its cofactor.
0|-2-λ2-215-823-3-λ|
Step 5.1.9
The minor for a42 is the determinant with row 4 and column 2 deleted.
|-2-λ2-215-8-17-λ-11|
Step 5.1.10
Multiply element a42 by its cofactor.
7|-2-λ2-215-8-17-λ-11|
Step 5.1.11
Add the terms together.
p(λ)=4|15-8-17-λ-1123-3-λ|+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0|-2-λ2-215-823-3-λ|+7|-2-λ2-215-8-17-λ-11|
p(λ)=4|15-8-17-λ-1123-3-λ|+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0|-2-λ2-215-823-3-λ|+7|-2-λ2-215-8-17-λ-11|
Step 5.2
Multiply 0 by |-2-λ2-215-823-3-λ|.
p(λ)=4|15-8-17-λ-1123-3-λ|+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3
Evaluate |15-8-17-λ-1123-3-λ|.
Step 5.3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Step 5.3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.3.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|5-83-3-λ|
Step 5.3.1.4
Multiply element a21 by its cofactor.
1|5-83-3-λ|
Step 5.3.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1-82-3-λ|
Step 5.3.1.6
Multiply element a22 by its cofactor.
(7-λ)|1-82-3-λ|
Step 5.3.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1523|
Step 5.3.1.8
Multiply element a23 by its cofactor.
11|1523|
Step 5.3.1.9
Add the terms together.
p(λ)=4(1|5-83-3-λ|+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1|5-83-3-λ|+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2
Evaluate |5-83-3-λ|.
Step 5.3.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(1(5(-3-λ)-3⋅-8)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2.2
Simplify the determinant.
Step 5.3.2.2.1
Simplify each term.
Step 5.3.2.2.1.1
Apply the distributive property.
p(λ)=4(1(5⋅-3+5(-λ)-3⋅-8)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2.2.1.2
Multiply 5 by -3.
p(λ)=4(1(-15+5(-λ)-3⋅-8)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2.2.1.3
Multiply -1 by 5.
p(λ)=4(1(-15-5λ-3⋅-8)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2.2.1.4
Multiply -3 by -8.
p(λ)=4(1(-15-5λ+24)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-15-5λ+24)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.2.2.2
Add -15 and 24.
p(λ)=4(1(-5λ+9)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)|1-82-3-λ|+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.3
Evaluate |1-82-3-λ|.
Step 5.3.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(1(-5λ+9)+(7-λ)(1(-3-λ)-2⋅-8)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.3.2
Simplify the determinant.
Step 5.3.3.2.1
Simplify each term.
Step 5.3.3.2.1.1
Multiply -3-λ by 1.
p(λ)=4(1(-5λ+9)+(7-λ)(-3-λ-2⋅-8)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.3.2.1.2
Multiply -2 by -8.
p(λ)=4(1(-5λ+9)+(7-λ)(-3-λ+16)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-3-λ+16)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.3.2.2
Add -3 and 16.
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11|1523|)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.4
Evaluate |1523|.
Step 5.3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11(1⋅3-2⋅5))+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.4.2
Simplify the determinant.
Step 5.3.4.2.1
Simplify each term.
Step 5.3.4.2.1.1
Multiply 3 by 1.
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11(3-2⋅5))+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.4.2.1.2
Multiply -2 by 5.
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11(3-10))+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11(3-10))+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.4.2.2
Subtract 10 from 3.
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(1(-5λ+9)+(7-λ)(-λ+13)+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5
Simplify the determinant.
Step 5.3.5.1
Simplify each term.
Step 5.3.5.1.1
Multiply -5λ+9 by 1.
p(λ)=4(-5λ+9+(7-λ)(-λ+13)+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.2
Expand (7-λ)(-λ+13) using the FOIL Method.
Step 5.3.5.1.2.1
Apply the distributive property.
p(λ)=4(-5λ+9+7(-λ+13)-λ(-λ+13)+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.2.2
Apply the distributive property.
p(λ)=4(-5λ+9+7(-λ)+7⋅13-λ(-λ+13)+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.2.3
Apply the distributive property.
p(λ)=4(-5λ+9+7(-λ)+7⋅13-λ(-λ)-λ⋅13+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(-5λ+9+7(-λ)+7⋅13-λ(-λ)-λ⋅13+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3
Simplify and combine like terms.
Step 5.3.5.1.3.1
Simplify each term.
Step 5.3.5.1.3.1.1
Multiply -1 by 7.
p(λ)=4(-5λ+9-7λ+7⋅13-λ(-λ)-λ⋅13+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.2
Multiply 7 by 13.
p(λ)=4(-5λ+9-7λ+91-λ(-λ)-λ⋅13+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.3
Rewrite using the commutative property of multiplication.
p(λ)=4(-5λ+9-7λ+91-1⋅-1λ⋅λ-λ⋅13+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.4
Multiply λ by λ by adding the exponents.
Step 5.3.5.1.3.1.4.1
Move λ.
p(λ)=4(-5λ+9-7λ+91-1⋅-1(λ⋅λ)-λ⋅13+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.4.2
Multiply λ by λ.
p(λ)=4(-5λ+9-7λ+91-1⋅-1λ2-λ⋅13+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(-5λ+9-7λ+91-1⋅-1λ2-λ⋅13+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.5
Multiply -1 by -1.
p(λ)=4(-5λ+9-7λ+91+1λ2-λ⋅13+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.6
Multiply λ2 by 1.
p(λ)=4(-5λ+9-7λ+91+λ2-λ⋅13+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.1.7
Multiply 13 by -1.
p(λ)=4(-5λ+9-7λ+91+λ2-13λ+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(-5λ+9-7λ+91+λ2-13λ+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.3.2
Subtract 13λ from -7λ.
p(λ)=4(-5λ+9-20λ+91+λ2+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(-5λ+9-20λ+91+λ2+11⋅-7)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.1.4
Multiply 11 by -7.
p(λ)=4(-5λ+9-20λ+91+λ2-77)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(-5λ+9-20λ+91+λ2-77)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.2
Subtract 20λ from -5λ.
p(λ)=4(-25λ+9+91+λ2-77)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.3
Add 9 and 91.
p(λ)=4(-25λ+100+λ2-77)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.4
Subtract 77 from 100.
p(λ)=4(-25λ+λ2+23)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.3.5.5
Reorder -25λ and λ2.
p(λ)=4(λ2-25λ+23)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)|-2-λ2-2-17-λ-1123-3-λ|+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4
Evaluate |-2-λ2-2-17-λ-1123-3-λ|.
Step 5.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 5.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|7-λ-113-3-λ|
Step 5.4.1.4
Multiply element a11 by its cofactor.
(-2-λ)|7-λ-113-3-λ|
Step 5.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-1-112-3-λ|
Step 5.4.1.6
Multiply element a12 by its cofactor.
-2|-1-112-3-λ|
Step 5.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-17-λ23|
Step 5.4.1.8
Multiply element a13 by its cofactor.
-2|-17-λ23|
Step 5.4.1.9
Add the terms together.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)|7-λ-113-3-λ|-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)|7-λ-113-3-λ|-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2
Evaluate |7-λ-113-3-λ|.
Step 5.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)((7-λ)(-3-λ)-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2
Simplify the determinant.
Step 5.4.2.2.1
Simplify each term.
Step 5.4.2.2.1.1
Expand (7-λ)(-3-λ) using the FOIL Method.
Step 5.4.2.2.1.1.1
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(7(-3-λ)-λ(-3-λ)-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.1.2
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(7⋅-3+7(-λ)-λ(-3-λ)-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.1.3
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(7⋅-3+7(-λ)-λ⋅-3-λ(-λ)-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(7⋅-3+7(-λ)-λ⋅-3-λ(-λ)-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2
Simplify and combine like terms.
Step 5.4.2.2.1.2.1
Simplify each term.
Step 5.4.2.2.1.2.1.1
Multiply 7 by -3.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21+7(-λ)-λ⋅-3-λ(-λ)-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.2
Multiply -1 by 7.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ-λ⋅-3-λ(-λ)-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.3
Multiply -3 by -1.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ-λ(-λ)-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ-1⋅-1λ⋅λ-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 5.4.2.2.1.2.1.5.1
Move λ.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ-1⋅-1(λ⋅λ)-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ-1⋅-1λ2-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ-1⋅-1λ2-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.6
Multiply -1 by -1.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ+1λ2-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ+λ2-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-7λ+3λ+λ2-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.2.2
Add -7λ and 3λ.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-4λ+λ2-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-4λ+λ2-3⋅-11)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.1.3
Multiply -3 by -11.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-4λ+λ2+33)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-21-4λ+λ2+33)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.2
Add -21 and 33.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(-4λ+λ2+12)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.2.2.3
Reorder -4λ and λ2.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2|-1-112-3-λ|-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3
Evaluate |-1-112-3-λ|.
Step 5.4.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(-(-3-λ)-2⋅-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2
Simplify the determinant.
Step 5.4.3.2.1
Simplify each term.
Step 5.4.3.2.1.1
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(--3--λ-2⋅-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2.1.2
Multiply -1 by -3.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3--λ-2⋅-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2.1.3
Multiply --λ.
Step 5.4.3.2.1.3.1
Multiply -1 by -1.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3+1λ-2⋅-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2.1.3.2
Multiply λ by 1.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3+λ-2⋅-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3+λ-2⋅-11)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2.1.4
Multiply -2 by -11.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3+λ+22)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(3+λ+22)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.3.2.2
Add 3 and 22.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2|-17-λ23|)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4
Evaluate |-17-λ23|.
Step 5.4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-1⋅3-2(7-λ)))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2
Simplify the determinant.
Step 5.4.4.2.1
Simplify each term.
Step 5.4.4.2.1.1
Multiply -1 by 3.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-3-2(7-λ)))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2.1.2
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-3-2⋅7-2(-λ)))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2.1.3
Multiply -2 by 7.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-3-14-2(-λ)))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2.1.4
Multiply -1 by -2.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-3-14+2λ))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-3-14+2λ))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2.2
Subtract 14 from -3.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(-17+2λ))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.4.2.3
Reorder -17 and 2λ.
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)((-2-λ)(λ2-4λ+12)-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5
Simplify the determinant.
Step 5.4.5.1
Simplify each term.
Step 5.4.5.1.1
Expand (-2-λ)(λ2-4λ+12) by multiplying each term in the first expression by each term in the second expression.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2-2(-4λ)-2⋅12-λ⋅λ2-λ(-4λ)-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2
Simplify each term.
Step 5.4.5.1.2.1
Multiply -4 by -2.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-2⋅12-λ⋅λ2-λ(-4λ)-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.2
Multiply -2 by 12.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ⋅λ2-λ(-4λ)-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.3
Multiply λ by λ2 by adding the exponents.
Step 5.4.5.1.2.3.1
Move λ2.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-(λ2λ)-λ(-4λ)-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.3.2
Multiply λ2 by λ.
Step 5.4.5.1.2.3.2.1
Raise λ to the power of 1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-(λ2λ1)-λ(-4λ)-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ2+1-λ(-4λ)-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ2+1-λ(-4λ)-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.3.3
Add 2 and 1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-λ(-4λ)-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-λ(-4λ)-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.4
Rewrite using the commutative property of multiplication.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-1⋅-4λ⋅λ-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.5
Multiply λ by λ by adding the exponents.
Step 5.4.5.1.2.5.1
Move λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-1⋅-4(λ⋅λ)-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.5.2
Multiply λ by λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-1⋅-4λ2-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3-1⋅-4λ2-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.6
Multiply -1 by -4.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3+4λ2-λ⋅12-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.2.7
Multiply 12 by -1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3+4λ2-12λ-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-2λ2+8λ-24-λ3+4λ2-12λ-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.3
Add -2λ2 and 4λ2.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2+8λ-24-λ3-12λ-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.4
Subtract 12λ from 8λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2(λ+25)-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.5
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-2⋅25-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.6
Multiply -2 by 25.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-50-2(2λ-17))+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.7
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-50-2(2λ)-2⋅-17)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.8
Multiply 2 by -2.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-50-4λ-2⋅-17)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.1.9
Multiply -2 by -17.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-50-4λ+34)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-4λ-24-λ3-2λ-50-4λ+34)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.2
Subtract 2λ from -4λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-6λ-24-λ3-50-4λ+34)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.3
Subtract 4λ from -6λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-10λ-24-λ3-50+34)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.4
Subtract 50 from -24.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-10λ-λ3-74+34)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.5
Add -74 and 34.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-10λ-λ3-40)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.6
Move -10λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(2λ2-λ3-10λ-40)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.4.5.7
Reorder 2λ2 and -λ3.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7|-2-λ2-215-8-17-λ-11|
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7|-2-λ2-215-8-17-λ-11|
Step 5.5
Evaluate |-2-λ2-215-8-17-λ-11|.
Step 5.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 5.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5-87-λ-11|
Step 5.5.1.4
Multiply element a11 by its cofactor.
(-2-λ)|5-87-λ-11|
Step 5.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-8-1-11|
Step 5.5.1.6
Multiply element a12 by its cofactor.
-2|1-8-1-11|
Step 5.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|15-17-λ|
Step 5.5.1.8
Multiply element a13 by its cofactor.
-2|15-17-λ|
Step 5.5.1.9
Add the terms together.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)|5-87-λ-11|-2|1-8-1-11|-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)|5-87-λ-11|-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2
Evaluate |5-87-λ-11|.
Step 5.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(5⋅-11-(7-λ)⋅-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2
Simplify the determinant.
Step 5.5.2.2.1
Simplify each term.
Step 5.5.2.2.1.1
Multiply 5 by -11.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55-(7-λ)⋅-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.2
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+(-1⋅7--λ)⋅-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.3
Multiply -1 by 7.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+(-7--λ)⋅-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.4
Multiply --λ.
Step 5.5.2.2.1.4.1
Multiply -1 by -1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+(-7+1λ)⋅-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.4.2
Multiply λ by 1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+(-7+λ)⋅-8)-2|1-8-1-11|-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+(-7+λ)⋅-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.5
Apply the distributive property.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55-7⋅-8+λ⋅-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.6
Multiply -7 by -8.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+56+λ⋅-8)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.1.7
Move -8 to the left of λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+56-8λ)-2|1-8-1-11|-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-55+56-8λ)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.2
Add -55 and 56.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(1-8λ)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.2.2.3
Reorder 1 and -8λ.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2|1-8-1-11|-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2|1-8-1-11|-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2|1-8-1-11|-2|15-17-λ|)
Step 5.5.3
Evaluate |1-8-1-11|.
Step 5.5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(1⋅-11---8)-2|15-17-λ|)
Step 5.5.3.2
Simplify the determinant.
Step 5.5.3.2.1
Simplify each term.
Step 5.5.3.2.1.1
Multiply -11 by 1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(-11---8)-2|15-17-λ|)
Step 5.5.3.2.1.2
Multiply ---8.
Step 5.5.3.2.1.2.1
Multiply -1 by -8.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(-11-1⋅8)-2|15-17-λ|)
Step 5.5.3.2.1.2.2
Multiply -1 by 8.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(-11-8)-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(-11-8)-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2(-11-8)-2|15-17-λ|)
Step 5.5.3.2.2
Subtract 8 from -11.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2⋅-19-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2⋅-19-2|15-17-λ|)
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2⋅-19-2|15-17-λ|)
Step 5.5.4
Evaluate |15-17-λ|.
Step 5.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2⋅-19-2(1(7-λ)-(-1⋅5)))
Step 5.5.4.2
Simplify the determinant.
Step 5.5.4.2.1
Simplify each term.
Step 5.5.4.2.1.1
Multiply 7-λ by 1.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2⋅-19-2(7-λ-(-1⋅5)))
Step 5.5.4.2.1.2
Multiply -(-1⋅5).
Step 5.5.4.2.1.2.1
Multiply -1 by 5.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2⋅-19-2(7-λ--5))
Step 5.5.4.2.1.2.2
Multiply -1 by -5.
p(λ)=4(λ2-25λ+23)+(5-λ)(-λ3+2λ2-10λ-40)+0+7((-2-λ)(-8λ+1)-2⋅-19-2(7-λ+5))
Step 5.5.4.2.2
Add and .
Step 5.5.5
Simplify the determinant.
Step 5.5.5.1
Simplify each term.
Step 5.5.5.1.1
Expand using the FOIL Method.
Step 5.5.5.1.1.1
Apply the distributive property.
Step 5.5.5.1.1.2
Apply the distributive property.
Step 5.5.5.1.1.3
Apply the distributive property.
Step 5.5.5.1.2
Simplify and combine like terms.
Step 5.5.5.1.2.1
Simplify each term.
Step 5.5.5.1.2.1.1
Multiply by .
Step 5.5.5.1.2.1.2
Multiply by .
Step 5.5.5.1.2.1.3
Rewrite using the commutative property of multiplication.
Step 5.5.5.1.2.1.4
Multiply by by adding the exponents.
Step 5.5.5.1.2.1.4.1
Move .
Step 5.5.5.1.2.1.4.2
Multiply by .
Step 5.5.5.1.2.1.5
Multiply by .
Step 5.5.5.1.2.1.6
Multiply by .
Step 5.5.5.1.2.2
Subtract from .
Step 5.5.5.1.3
Multiply by .
Step 5.5.5.1.4
Apply the distributive property.
Step 5.5.5.1.5
Multiply by .
Step 5.5.5.1.6
Multiply by .
Step 5.5.5.2
Add and .
Step 5.5.5.3
Add and .
Step 5.5.5.4
Subtract from .
Step 5.5.5.5
Reorder and .
Step 5.6
Simplify the determinant.
Step 5.6.1
Add and .
Step 5.6.2
Simplify each term.
Step 5.6.2.1
Apply the distributive property.
Step 5.6.2.2
Simplify.
Step 5.6.2.2.1
Multiply by .
Step 5.6.2.2.2
Multiply by .
Step 5.6.2.3
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.6.2.4
Simplify each term.
Step 5.6.2.4.1
Multiply by .
Step 5.6.2.4.2
Multiply by .
Step 5.6.2.4.3
Multiply by .
Step 5.6.2.4.4
Multiply by .
Step 5.6.2.4.5
Rewrite using the commutative property of multiplication.
Step 5.6.2.4.6
Multiply by by adding the exponents.
Step 5.6.2.4.6.1
Move .
Step 5.6.2.4.6.2
Multiply by .
Step 5.6.2.4.6.2.1
Raise to the power of .
Step 5.6.2.4.6.2.2
Use the power rule to combine exponents.
Step 5.6.2.4.6.3
Add and .
Step 5.6.2.4.7
Multiply by .
Step 5.6.2.4.8
Multiply by .
Step 5.6.2.4.9
Rewrite using the commutative property of multiplication.
Step 5.6.2.4.10
Multiply by by adding the exponents.
Step 5.6.2.4.10.1
Move .
Step 5.6.2.4.10.2
Multiply by .
Step 5.6.2.4.10.2.1
Raise to the power of .
Step 5.6.2.4.10.2.2
Use the power rule to combine exponents.
Step 5.6.2.4.10.3
Add and .
Step 5.6.2.4.11
Multiply by .
Step 5.6.2.4.12
Rewrite using the commutative property of multiplication.
Step 5.6.2.4.13
Multiply by by adding the exponents.
Step 5.6.2.4.13.1
Move .
Step 5.6.2.4.13.2
Multiply by .
Step 5.6.2.4.14
Multiply by .
Step 5.6.2.4.15
Multiply by .
Step 5.6.2.5
Subtract from .
Step 5.6.2.6
Add and .
Step 5.6.2.7
Add and .
Step 5.6.2.8
Apply the distributive property.
Step 5.6.2.9
Simplify.
Step 5.6.2.9.1
Multiply by .
Step 5.6.2.9.2
Multiply by .
Step 5.6.2.9.3
Multiply by .
Step 5.6.3
Add and .
Step 5.6.4
Add and .
Step 5.6.5
Subtract from .
Step 5.6.6
Add and .
Step 5.6.7
Subtract from .
Step 5.6.8
Add and .
Step 5.6.9
Move .
Step 5.6.10
Move .
Step 5.6.11
Reorder and .