Enter a problem...
Linear Algebra Examples
A=[07170]
Step 1
Step 1.1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI2)
Step 1.2
The identity matrix or unit matrix of size 2 is the 2×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001]
Step 1.3
Substitute the known values into p(λ)=determinant(A-λI2).
Step 1.3.1
Substitute [07170] for A.
p(λ)=determinant([07170]-λI2)
Step 1.3.2
Substitute [1001] for I2.
p(λ)=determinant([07170]-λ[1001])
p(λ)=determinant([07170]-λ[1001])
Step 1.4
Simplify.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([07170]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2
Simplify each element in the matrix.
Step 1.4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([07170]+[-λ-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.2
Multiply -λ⋅0.
Step 1.4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([07170]+[-λ0λ-λ⋅0-λ⋅1])
Step 1.4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([07170]+[-λ0-λ⋅0-λ⋅1])
p(λ)=determinant([07170]+[-λ0-λ⋅0-λ⋅1])
Step 1.4.1.2.3
Multiply -λ⋅0.
Step 1.4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([07170]+[-λ00λ-λ⋅1])
Step 1.4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([07170]+[-λ00-λ⋅1])
p(λ)=determinant([07170]+[-λ00-λ⋅1])
Step 1.4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([07170]+[-λ00-λ])
p(λ)=determinant([07170]+[-λ00-λ])
p(λ)=determinant([07170]+[-λ00-λ])
Step 1.4.2
Add the corresponding elements.
p(λ)=determinant[0-λ7+017+00-λ]
Step 1.4.3
Simplify each element.
Step 1.4.3.1
Subtract λ from 0.
p(λ)=determinant[-λ7+017+00-λ]
Step 1.4.3.2
Add 7 and 0.
p(λ)=determinant[-λ717+00-λ]
Step 1.4.3.3
Add 17 and 0.
p(λ)=determinant[-λ7170-λ]
Step 1.4.3.4
Subtract λ from 0.
p(λ)=determinant[-λ717-λ]
p(λ)=determinant[-λ717-λ]
p(λ)=determinant[-λ717-λ]
Step 1.5
Find the determinant.
Step 1.5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ)-17⋅7
Step 1.5.2
Simplify each term.
Step 1.5.2.1
Rewrite using the commutative property of multiplication.
p(λ)=-1⋅-1λ⋅λ-17⋅7
Step 1.5.2.2
Multiply λ by λ by adding the exponents.
Step 1.5.2.2.1
Move λ.
p(λ)=-1⋅-1(λ⋅λ)-17⋅7
Step 1.5.2.2.2
Multiply λ by λ.
p(λ)=-1⋅-1λ2-17⋅7
p(λ)=-1⋅-1λ2-17⋅7
Step 1.5.2.3
Multiply -1 by -1.
p(λ)=1λ2-17⋅7
Step 1.5.2.4
Multiply λ2 by 1.
p(λ)=λ2-17⋅7
Step 1.5.2.5
Cancel the common factor of 7.
Step 1.5.2.5.1
Move the leading negative in -17 into the numerator.
p(λ)=λ2+-17⋅7
Step 1.5.2.5.2
Cancel the common factor.
p(λ)=λ2+-17⋅7
Step 1.5.2.5.3
Rewrite the expression.
p(λ)=λ2-1
p(λ)=λ2-1
p(λ)=λ2-1
p(λ)=λ2-1
Step 1.6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ2-1=0
Step 1.7
Solve for λ.
Step 1.7.1
Add 1 to both sides of the equation.
λ2=1
Step 1.7.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
λ=±√1
Step 1.7.3
Any root of 1 is 1.
λ=±1
Step 1.7.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.7.4.1
First, use the positive value of the ± to find the first solution.
λ=1
Step 1.7.4.2
Next, use the negative value of the ± to find the second solution.
λ=-1
Step 1.7.4.3
The complete solution is the result of both the positive and negative portions of the solution.
λ=1,-1
λ=1,-1
λ=1,-1
λ=1,-1
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where N is the null space and I is the identity matrix.
εA=N(A-λI2)
Step 3
Step 3.1
Substitute the known values into the formula.
N([07170]-[1001])
Step 3.2
Simplify.
Step 3.2.1
Subtract the corresponding elements.
[0-17-017-00-1]
Step 3.2.2
Simplify each element.
Step 3.2.2.1
Subtract 1 from 0.
[-17-017-00-1]
Step 3.2.2.2
Subtract 0 from 7.
[-1717-00-1]
Step 3.2.2.3
Subtract 0 from 17.
[-17170-1]
Step 3.2.2.4
Subtract 1 from 0.
[-1717-1]
[-1717-1]
[-1717-1]
Step 3.3
Find the null space when λ=1.
Step 3.3.1
Write as an augmented matrix for Ax=0.
[-17017-10]
Step 3.3.2
Find the reduced row echelon form.
Step 3.3.2.1
Multiply each element of R1 by -1 to make the entry at 1,1 a 1.
Step 3.3.2.1.1
Multiply each element of R1 by -1 to make the entry at 1,1 a 1.
[--1-1⋅7-017-10]
Step 3.3.2.1.2
Simplify R1.
[1-7017-10]
[1-7017-10]
Step 3.3.2.2
Perform the row operation R2=R2-17R1 to make the entry at 2,1 a 0.
Step 3.3.2.2.1
Perform the row operation R2=R2-17R1 to make the entry at 2,1 a 0.
[1-7017-17⋅1-1-17⋅-70-17⋅0]
Step 3.3.2.2.2
Simplify R2.
[1-70000]
[1-70000]
[1-70000]
Step 3.3.3
Use the result matrix to declare the final solution to the system of equations.
x-7y=0
0=0
Step 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xy]=[7yy]
Step 3.3.5
Write the solution as a linear combination of vectors.
[xy]=y[71]
Step 3.3.6
Write as a solution set.
{y[71]|y∈R}
Step 3.3.7
The solution is the set of vectors created from the free variables of the system.
{[71]}
{[71]}
{[71]}
Step 4
Step 4.1
Substitute the known values into the formula.
N([07170]+[1001])
Step 4.2
Simplify.
Step 4.2.1
Add the corresponding elements.
[0+17+017+00+1]
Step 4.2.2
Simplify each element.
Step 4.2.2.1
Add 0 and 1.
[17+017+00+1]
Step 4.2.2.2
Add 7 and 0.
[1717+00+1]
Step 4.2.2.3
Add 17 and 0.
[17170+1]
Step 4.2.2.4
Add 0 and 1.
[17171]
[17171]
[17171]
Step 4.3
Find the null space when λ=-1.
Step 4.3.1
Write as an augmented matrix for Ax=0.
[1701710]
Step 4.3.2
Find the reduced row echelon form.
Step 4.3.2.1
Perform the row operation R2=R2-17R1 to make the entry at 2,1 a 0.
Step 4.3.2.1.1
Perform the row operation R2=R2-17R1 to make the entry at 2,1 a 0.
[17017-17⋅11-17⋅70-17⋅0]
Step 4.3.2.1.2
Simplify R2.
[170000]
[170000]
[170000]
Step 4.3.3
Use the result matrix to declare the final solution to the system of equations.
x+7y=0
0=0
Step 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xy]=[-7yy]
Step 4.3.5
Write the solution as a linear combination of vectors.
[xy]=y[-71]
Step 4.3.6
Write as a solution set.
{y[-71]|y∈R}
Step 4.3.7
The solution is the set of vectors created from the free variables of the system.
{[-71]}
{[-71]}
{[-71]}
Step 5
The eigenspace of A is the list of the vector space for each eigenvalue.
{[71],[-71]}