Enter a problem...
Linear Algebra Examples
[9978][9978]
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI2)p(λ)=determinant(A−λI2)
Step 2
The identity matrix or unit matrix of size 22 is the 2×22×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001][1001]
Step 3
Step 3.1
Substitute [9978][9978] for AA.
p(λ)=determinant([9978]-λI2)p(λ)=determinant([9978]−λI2)
Step 3.2
Substitute [1001][1001] for I2I2.
p(λ)=determinant([9978]-λ[1001])p(λ)=determinant([9978]−λ[1001])
p(λ)=determinant([9978]-λ[1001])p(λ)=determinant([9978]−λ[1001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ−λ by each element of the matrix.
p(λ)=determinant([9978]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant([9978]+[−λ⋅1−λ⋅0−λ⋅0−λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1−1 by 11.
p(λ)=determinant([9978]+[-λ-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant([9978]+[−λ−λ⋅0−λ⋅0−λ⋅1])
Step 4.1.2.2
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.2.1
Multiply 00 by -1−1.
p(λ)=determinant([9978]+[-λ0λ-λ⋅0-λ⋅1])p(λ)=determinant([9978]+[−λ0λ−λ⋅0−λ⋅1])
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([9978]+[-λ0-λ⋅0-λ⋅1])p(λ)=determinant([9978]+[−λ0−λ⋅0−λ⋅1])
p(λ)=determinant([9978]+[-λ0-λ⋅0-λ⋅1])p(λ)=determinant([9978]+[−λ0−λ⋅0−λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.3.1
Multiply 00 by -1−1.
p(λ)=determinant([9978]+[-λ00λ-λ⋅1])p(λ)=determinant([9978]+[−λ00λ−λ⋅1])
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([9978]+[-λ00-λ⋅1])p(λ)=determinant([9978]+[−λ00−λ⋅1])
p(λ)=determinant([9978]+[-λ00-λ⋅1])p(λ)=determinant([9978]+[−λ00−λ⋅1])
Step 4.1.2.4
Multiply -1−1 by 11.
p(λ)=determinant([9978]+[-λ00-λ])p(λ)=determinant([9978]+[−λ00−λ])
p(λ)=determinant([9978]+[-λ00-λ])p(λ)=determinant([9978]+[−λ00−λ])
p(λ)=determinant([9978]+[-λ00-λ])p(λ)=determinant([9978]+[−λ00−λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[9-λ9+07+08-λ]p(λ)=determinant[9−λ9+07+08−λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 99 and 00.
p(λ)=determinant[9-λ97+08-λ]p(λ)=determinant[9−λ97+08−λ]
Step 4.3.2
Add 77 and 00.
p(λ)=determinant[9-λ978-λ]p(λ)=determinant[9−λ978−λ]
p(λ)=determinant[9-λ978-λ]p(λ)=determinant[9−λ978−λ]
p(λ)=determinant[9-λ978-λ]p(λ)=determinant[9−λ978−λ]
Step 5
Step 5.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
p(λ)=(9-λ)(8-λ)-7⋅9p(λ)=(9−λ)(8−λ)−7⋅9
Step 5.2
Simplify the determinant.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Expand (9-λ)(8-λ)(9−λ)(8−λ) using the FOIL Method.
Step 5.2.1.1.1
Apply the distributive property.
p(λ)=9(8-λ)-λ(8-λ)-7⋅9p(λ)=9(8−λ)−λ(8−λ)−7⋅9
Step 5.2.1.1.2
Apply the distributive property.
p(λ)=9⋅8+9(-λ)-λ(8-λ)-7⋅9p(λ)=9⋅8+9(−λ)−λ(8−λ)−7⋅9
Step 5.2.1.1.3
Apply the distributive property.
p(λ)=9⋅8+9(-λ)-λ⋅8-λ(-λ)-7⋅9p(λ)=9⋅8+9(−λ)−λ⋅8−λ(−λ)−7⋅9
p(λ)=9⋅8+9(-λ)-λ⋅8-λ(-λ)-7⋅9p(λ)=9⋅8+9(−λ)−λ⋅8−λ(−λ)−7⋅9
Step 5.2.1.2
Simplify and combine like terms.
Step 5.2.1.2.1
Simplify each term.
Step 5.2.1.2.1.1
Multiply 99 by 88.
p(λ)=72+9(-λ)-λ⋅8-λ(-λ)-7⋅9p(λ)=72+9(−λ)−λ⋅8−λ(−λ)−7⋅9
Step 5.2.1.2.1.2
Multiply -1−1 by 99.
p(λ)=72-9λ-λ⋅8-λ(-λ)-7⋅9p(λ)=72−9λ−λ⋅8−λ(−λ)−7⋅9
Step 5.2.1.2.1.3
Multiply 88 by -1−1.
p(λ)=72-9λ-8λ-λ(-λ)-7⋅9p(λ)=72−9λ−8λ−λ(−λ)−7⋅9
Step 5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=72-9λ-8λ-1⋅-1λ⋅λ-7⋅9p(λ)=72−9λ−8λ−1⋅−1λ⋅λ−7⋅9
Step 5.2.1.2.1.5
Multiply λλ by λλ by adding the exponents.
Step 5.2.1.2.1.5.1
Move λλ.
p(λ)=72-9λ-8λ-1⋅-1(λ⋅λ)-7⋅9p(λ)=72−9λ−8λ−1⋅−1(λ⋅λ)−7⋅9
Step 5.2.1.2.1.5.2
Multiply λλ by λλ.
p(λ)=72-9λ-8λ-1⋅-1λ2-7⋅9p(λ)=72−9λ−8λ−1⋅−1λ2−7⋅9
p(λ)=72-9λ-8λ-1⋅-1λ2-7⋅9p(λ)=72−9λ−8λ−1⋅−1λ2−7⋅9
Step 5.2.1.2.1.6
Multiply -1−1 by -1−1.
p(λ)=72-9λ-8λ+1λ2-7⋅9p(λ)=72−9λ−8λ+1λ2−7⋅9
Step 5.2.1.2.1.7
Multiply λ2λ2 by 11.
p(λ)=72-9λ-8λ+λ2-7⋅9p(λ)=72−9λ−8λ+λ2−7⋅9
p(λ)=72-9λ-8λ+λ2-7⋅9p(λ)=72−9λ−8λ+λ2−7⋅9
Step 5.2.1.2.2
Subtract 8λ8λ from -9λ−9λ.
p(λ)=72-17λ+λ2-7⋅9p(λ)=72−17λ+λ2−7⋅9
p(λ)=72-17λ+λ2-7⋅9p(λ)=72−17λ+λ2−7⋅9
Step 5.2.1.3
Multiply -7−7 by 99.
p(λ)=72-17λ+λ2-63p(λ)=72−17λ+λ2−63
p(λ)=72-17λ+λ2-63p(λ)=72−17λ+λ2−63
Step 5.2.2
Subtract 6363 from 7272.
p(λ)=-17λ+λ2+9p(λ)=−17λ+λ2+9
Step 5.2.3
Reorder -17λ−17λ and λ2λ2.
p(λ)=λ2-17λ+9p(λ)=λ2−17λ+9
p(λ)=λ2-17λ+9p(λ)=λ2−17λ+9
p(λ)=λ2-17λ+9p(λ)=λ2−17λ+9