Linear Algebra Examples

Find the Characteristic Equation [[9,9],[7,8]]
[9978][9978]
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2)
Step 2
The identity matrix or unit matrix of size 22 is the 2×22×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001][1001]
Step 3
Substitute the known values into p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2).
Tap for more steps...
Step 3.1
Substitute [9978][9978] for AA.
p(λ)=determinant([9978]-λI2)p(λ)=determinant([9978]λI2)
Step 3.2
Substitute [1001][1001] for I2I2.
p(λ)=determinant([9978]-λ[1001])p(λ)=determinant([9978]λ[1001])
p(λ)=determinant([9978]-λ[1001])p(λ)=determinant([9978]λ[1001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λλ by each element of the matrix.
p(λ)=determinant([9978]+[-λ1-λ0-λ0-λ1])p(λ)=determinant([9978]+[λ1λ0λ0λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -11 by 11.
p(λ)=determinant([9978]+[-λ-λ0-λ0-λ1])p(λ)=determinant([9978]+[λλ0λ0λ1])
Step 4.1.2.2
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 00 by -11.
p(λ)=determinant([9978]+[-λ0λ-λ0-λ1])p(λ)=determinant([9978]+[λ0λλ0λ1])
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([9978]+[-λ0-λ0-λ1])p(λ)=determinant([9978]+[λ0λ0λ1])
p(λ)=determinant([9978]+[-λ0-λ0-λ1])p(λ)=determinant([9978]+[λ0λ0λ1])
Step 4.1.2.3
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 00 by -11.
p(λ)=determinant([9978]+[-λ00λ-λ1])p(λ)=determinant([9978]+[λ00λλ1])
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([9978]+[-λ00-λ1])p(λ)=determinant([9978]+[λ00λ1])
p(λ)=determinant([9978]+[-λ00-λ1])p(λ)=determinant([9978]+[λ00λ1])
Step 4.1.2.4
Multiply -11 by 11.
p(λ)=determinant([9978]+[-λ00-λ])p(λ)=determinant([9978]+[λ00λ])
p(λ)=determinant([9978]+[-λ00-λ])p(λ)=determinant([9978]+[λ00λ])
p(λ)=determinant([9978]+[-λ00-λ])p(λ)=determinant([9978]+[λ00λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[9-λ9+07+08-λ]p(λ)=determinant[9λ9+07+08λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 99 and 00.
p(λ)=determinant[9-λ97+08-λ]p(λ)=determinant[9λ97+08λ]
Step 4.3.2
Add 77 and 00.
p(λ)=determinant[9-λ978-λ]p(λ)=determinant[9λ978λ]
p(λ)=determinant[9-λ978-λ]p(λ)=determinant[9λ978λ]
p(λ)=determinant[9-λ978-λ]p(λ)=determinant[9λ978λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
p(λ)=(9-λ)(8-λ)-79p(λ)=(9λ)(8λ)79
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Expand (9-λ)(8-λ)(9λ)(8λ) using the FOIL Method.
Tap for more steps...
Step 5.2.1.1.1
Apply the distributive property.
p(λ)=9(8-λ)-λ(8-λ)-79p(λ)=9(8λ)λ(8λ)79
Step 5.2.1.1.2
Apply the distributive property.
p(λ)=98+9(-λ)-λ(8-λ)-79p(λ)=98+9(λ)λ(8λ)79
Step 5.2.1.1.3
Apply the distributive property.
p(λ)=98+9(-λ)-λ8-λ(-λ)-79p(λ)=98+9(λ)λ8λ(λ)79
p(λ)=98+9(-λ)-λ8-λ(-λ)-79p(λ)=98+9(λ)λ8λ(λ)79
Step 5.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.2.1.1
Multiply 99 by 88.
p(λ)=72+9(-λ)-λ8-λ(-λ)-79p(λ)=72+9(λ)λ8λ(λ)79
Step 5.2.1.2.1.2
Multiply -11 by 99.
p(λ)=72-9λ-λ8-λ(-λ)-79p(λ)=729λλ8λ(λ)79
Step 5.2.1.2.1.3
Multiply 88 by -11.
p(λ)=72-9λ-8λ-λ(-λ)-79p(λ)=729λ8λλ(λ)79
Step 5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=72-9λ-8λ-1-1λλ-79p(λ)=729λ8λ11λλ79
Step 5.2.1.2.1.5
Multiply λλ by λλ by adding the exponents.
Tap for more steps...
Step 5.2.1.2.1.5.1
Move λλ.
p(λ)=72-9λ-8λ-1-1(λλ)-79p(λ)=729λ8λ11(λλ)79
Step 5.2.1.2.1.5.2
Multiply λλ by λλ.
p(λ)=72-9λ-8λ-1-1λ2-79p(λ)=729λ8λ11λ279
p(λ)=72-9λ-8λ-1-1λ2-79p(λ)=729λ8λ11λ279
Step 5.2.1.2.1.6
Multiply -11 by -11.
p(λ)=72-9λ-8λ+1λ2-79p(λ)=729λ8λ+1λ279
Step 5.2.1.2.1.7
Multiply λ2λ2 by 11.
p(λ)=72-9λ-8λ+λ2-79p(λ)=729λ8λ+λ279
p(λ)=72-9λ-8λ+λ2-79p(λ)=729λ8λ+λ279
Step 5.2.1.2.2
Subtract 8λ8λ from -9λ9λ.
p(λ)=72-17λ+λ2-79p(λ)=7217λ+λ279
p(λ)=72-17λ+λ2-79p(λ)=7217λ+λ279
Step 5.2.1.3
Multiply -77 by 99.
p(λ)=72-17λ+λ2-63p(λ)=7217λ+λ263
p(λ)=72-17λ+λ2-63p(λ)=7217λ+λ263
Step 5.2.2
Subtract 6363 from 7272.
p(λ)=-17λ+λ2+9p(λ)=17λ+λ2+9
Step 5.2.3
Reorder -17λ17λ and λ2λ2.
p(λ)=λ2-17λ+9p(λ)=λ217λ+9
p(λ)=λ2-17λ+9p(λ)=λ217λ+9
p(λ)=λ2-17λ+9p(λ)=λ217λ+9
 [x2  12  π  xdx ]  x2  12  π  xdx