Enter a problem...
Linear Algebra Examples
[40-84018-38036-72-2]⎡⎢⎣40−84018−38036−72−2⎤⎥⎦
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI3)
Step 2
The identity matrix or unit matrix of size 3 is the 3×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]
Step 3
Step 3.1
Substitute [40-84018-38036-72-2] for A.
p(λ)=determinant([40-84018-38036-72-2]-λI3)
Step 3.2
Substitute [100010001] for I3.
p(λ)=determinant([40-84018-38036-72-2]-λ[100010001])
p(λ)=determinant([40-84018-38036-72-2]-λ[100010001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([40-84018-38036-72-2]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([40-84018-38036-72-2]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2
Multiply -λ⋅0.
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([40-84018-38036-72-2]+[-λ0λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([40-84018-38036-72-2]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([40-84018-38036-72-2]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0.
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([40-84018-38036-72-2]+[-λ00λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([40-84018-38036-72-2]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([40-84018-38036-72-2]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4
Multiply -λ⋅0.
Step 4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([40-84018-38036-72-2]+[-λ000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.5
Multiply -1 by 1.
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6
Multiply -λ⋅0.
Step 4.1.2.6.1
Multiply 0 by -1.
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ0λ-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6.2
Multiply 0 by λ.
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.7
Multiply -λ⋅0.
Step 4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ00λ-λ⋅0-λ⋅1])
Step 4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ00-λ⋅0-λ⋅1])
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ00-λ⋅0-λ⋅1])
Step 4.1.2.8
Multiply -λ⋅0.
Step 4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ000λ-λ⋅1])
Step 4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ000-λ⋅1])
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ000-λ⋅1])
Step 4.1.2.9
Multiply -1 by 1.
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ000-λ])
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ000-λ])
p(λ)=determinant([40-84018-38036-72-2]+[-λ000-λ000-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[40-λ-84+00+018+0-38-λ0+036+0-72+0-2-λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add -84 and 0.
p(λ)=determinant[40-λ-840+018+0-38-λ0+036+0-72+0-2-λ]
Step 4.3.2
Add 0 and 0.
p(λ)=determinant[40-λ-84018+0-38-λ0+036+0-72+0-2-λ]
Step 4.3.3
Add 18 and 0.
p(λ)=determinant[40-λ-84018-38-λ0+036+0-72+0-2-λ]
Step 4.3.4
Add 0 and 0.
p(λ)=determinant[40-λ-84018-38-λ036+0-72+0-2-λ]
Step 4.3.5
Add 36 and 0.
p(λ)=determinant[40-λ-84018-38-λ036-72+0-2-λ]
Step 4.3.6
Add -72 and 0.
p(λ)=determinant[40-λ-84018-38-λ036-72-2-λ]
p(λ)=determinant[40-λ-84018-38-λ036-72-2-λ]
p(λ)=determinant[40-λ-84018-38-λ036-72-2-λ]
Step 5
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 3 by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a13 is the determinant with row 1 and column 3 deleted.
|18-38-λ36-72|
Step 5.1.4
Multiply element a13 by its cofactor.
0|18-38-λ36-72|
Step 5.1.5
The minor for a23 is the determinant with row 2 and column 3 deleted.
|40-λ-8436-72|
Step 5.1.6
Multiply element a23 by its cofactor.
0|40-λ-8436-72|
Step 5.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|40-λ-8418-38-λ|
Step 5.1.8
Multiply element a33 by its cofactor.
(-2-λ)|40-λ-8418-38-λ|
Step 5.1.9
Add the terms together.
p(λ)=0|18-38-λ36-72|+0|40-λ-8436-72|+(-2-λ)|40-λ-8418-38-λ|
p(λ)=0|18-38-λ36-72|+0|40-λ-8436-72|+(-2-λ)|40-λ-8418-38-λ|
Step 5.2
Multiply 0 by |18-38-λ36-72|.
p(λ)=0+0|40-λ-8436-72|+(-2-λ)|40-λ-8418-38-λ|
Step 5.3
Multiply 0 by |40-λ-8436-72|.
p(λ)=0+0+(-2-λ)|40-λ-8418-38-λ|
Step 5.4
Evaluate |40-λ-8418-38-λ|.
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=0+0+(-2-λ)((40-λ)(-38-λ)-18⋅-84)
Step 5.4.2
Simplify the determinant.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Expand (40-λ)(-38-λ) using the FOIL Method.
Step 5.4.2.1.1.1
Apply the distributive property.
p(λ)=0+0+(-2-λ)(40(-38-λ)-λ(-38-λ)-18⋅-84)
Step 5.4.2.1.1.2
Apply the distributive property.
p(λ)=0+0+(-2-λ)(40⋅-38+40(-λ)-λ(-38-λ)-18⋅-84)
Step 5.4.2.1.1.3
Apply the distributive property.
p(λ)=0+0+(-2-λ)(40⋅-38+40(-λ)-λ⋅-38-λ(-λ)-18⋅-84)
p(λ)=0+0+(-2-λ)(40⋅-38+40(-λ)-λ⋅-38-λ(-λ)-18⋅-84)
Step 5.4.2.1.2
Simplify and combine like terms.
Step 5.4.2.1.2.1
Simplify each term.
Step 5.4.2.1.2.1.1
Multiply 40 by -38.
p(λ)=0+0+(-2-λ)(-1520+40(-λ)-λ⋅-38-λ(-λ)-18⋅-84)
Step 5.4.2.1.2.1.2
Multiply -1 by 40.
p(λ)=0+0+(-2-λ)(-1520-40λ-λ⋅-38-λ(-λ)-18⋅-84)
Step 5.4.2.1.2.1.3
Multiply -38 by -1.
p(λ)=0+0+(-2-λ)(-1520-40λ+38λ-λ(-λ)-18⋅-84)
Step 5.4.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=0+0+(-2-λ)(-1520-40λ+38λ-1⋅-1λ⋅λ-18⋅-84)
Step 5.4.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 5.4.2.1.2.1.5.1
Move λ.
p(λ)=0+0+(-2-λ)(-1520-40λ+38λ-1⋅-1(λ⋅λ)-18⋅-84)
Step 5.4.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=0+0+(-2-λ)(-1520-40λ+38λ-1⋅-1λ2-18⋅-84)
p(λ)=0+0+(-2-λ)(-1520-40λ+38λ-1⋅-1λ2-18⋅-84)
Step 5.4.2.1.2.1.6
Multiply -1 by -1.
p(λ)=0+0+(-2-λ)(-1520-40λ+38λ+1λ2-18⋅-84)
Step 5.4.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=0+0+(-2-λ)(-1520-40λ+38λ+λ2-18⋅-84)
p(λ)=0+0+(-2-λ)(-1520-40λ+38λ+λ2-18⋅-84)
Step 5.4.2.1.2.2
Add -40λ and 38λ.
p(λ)=0+0+(-2-λ)(-1520-2λ+λ2-18⋅-84)
p(λ)=0+0+(-2-λ)(-1520-2λ+λ2-18⋅-84)
Step 5.4.2.1.3
Multiply -18 by -84.
p(λ)=0+0+(-2-λ)(-1520-2λ+λ2+1512)
p(λ)=0+0+(-2-λ)(-1520-2λ+λ2+1512)
Step 5.4.2.2
Add -1520 and 1512.
p(λ)=0+0+(-2-λ)(-2λ+λ2-8)
Step 5.4.2.3
Reorder -2λ and λ2.
p(λ)=0+0+(-2-λ)(λ2-2λ-8)
p(λ)=0+0+(-2-λ)(λ2-2λ-8)
p(λ)=0+0+(-2-λ)(λ2-2λ-8)
Step 5.5
Simplify the determinant.
Step 5.5.1
Combine the opposite terms in 0+0+(-2-λ)(λ2-2λ-8).
Step 5.5.1.1
Add 0 and 0.
p(λ)=0+(-2-λ)(λ2-2λ-8)
Step 5.5.1.2
Add 0 and (-2-λ)(λ2-2λ-8).
p(λ)=(-2-λ)(λ2-2λ-8)
p(λ)=(-2-λ)(λ2-2λ-8)
Step 5.5.2
Expand (-2-λ)(λ2-2λ-8) by multiplying each term in the first expression by each term in the second expression.
p(λ)=-2λ2-2(-2λ)-2⋅-8-λ⋅λ2-λ(-2λ)-λ⋅-8
Step 5.5.3
Simplify each term.
Step 5.5.3.1
Multiply -2 by -2.
p(λ)=-2λ2+4λ-2⋅-8-λ⋅λ2-λ(-2λ)-λ⋅-8
Step 5.5.3.2
Multiply -2 by -8.
p(λ)=-2λ2+4λ+16-λ⋅λ2-λ(-2λ)-λ⋅-8
Step 5.5.3.3
Multiply λ by λ2 by adding the exponents.
Step 5.5.3.3.1
Move λ2.
p(λ)=-2λ2+4λ+16-(λ2λ)-λ(-2λ)-λ⋅-8
Step 5.5.3.3.2
Multiply λ2 by λ.
Step 5.5.3.3.2.1
Raise λ to the power of 1.
p(λ)=-2λ2+4λ+16-(λ2λ1)-λ(-2λ)-λ⋅-8
Step 5.5.3.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-2λ2+4λ+16-λ2+1-λ(-2λ)-λ⋅-8
p(λ)=-2λ2+4λ+16-λ2+1-λ(-2λ)-λ⋅-8
Step 5.5.3.3.3
Add 2 and 1.
p(λ)=-2λ2+4λ+16-λ3-λ(-2λ)-λ⋅-8
p(λ)=-2λ2+4λ+16-λ3-λ(-2λ)-λ⋅-8
Step 5.5.3.4
Rewrite using the commutative property of multiplication.
p(λ)=-2λ2+4λ+16-λ3-1⋅-2λ⋅λ-λ⋅-8
Step 5.5.3.5
Multiply λ by λ by adding the exponents.
Step 5.5.3.5.1
Move λ.
p(λ)=-2λ2+4λ+16-λ3-1⋅-2(λ⋅λ)-λ⋅-8
Step 5.5.3.5.2
Multiply λ by λ.
p(λ)=-2λ2+4λ+16-λ3-1⋅-2λ2-λ⋅-8
p(λ)=-2λ2+4λ+16-λ3-1⋅-2λ2-λ⋅-8
Step 5.5.3.6
Multiply -1 by -2.
p(λ)=-2λ2+4λ+16-λ3+2λ2-λ⋅-8
Step 5.5.3.7
Multiply -8 by -1.
p(λ)=-2λ2+4λ+16-λ3+2λ2+8λ
p(λ)=-2λ2+4λ+16-λ3+2λ2+8λ
Step 5.5.4
Combine the opposite terms in -2λ2+4λ+16-λ3+2λ2+8λ.
Step 5.5.4.1
Add -2λ2 and 2λ2.
p(λ)=4λ+16-λ3+0+8λ
Step 5.5.4.2
Add 4λ+16-λ3 and 0.
p(λ)=4λ+16-λ3+8λ
p(λ)=4λ+16-λ3+8λ
Step 5.5.5
Add 4λ and 8λ.
p(λ)=12λ+16-λ3
Step 5.5.6
Move 16.
p(λ)=12λ-λ3+16
Step 5.5.7
Reorder 12λ and -λ3.
p(λ)=-λ3+12λ+16
p(λ)=-λ3+12λ+16
p(λ)=-λ3+12λ+16