Enter a problem...
Linear Algebra Examples
Step 1
Step 1.1
Set up the formula to find the characteristic equation .
Step 1.2
The identity matrix or unit matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere.
Step 1.3
Substitute the known values into .
Step 1.3.1
Substitute for .
Step 1.3.2
Substitute for .
Step 1.4
Simplify.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Multiply by each element of the matrix.
Step 1.4.1.2
Simplify each element in the matrix.
Step 1.4.1.2.1
Multiply by .
Step 1.4.1.2.2
Multiply .
Step 1.4.1.2.2.1
Multiply by .
Step 1.4.1.2.2.2
Multiply by .
Step 1.4.1.2.3
Multiply .
Step 1.4.1.2.3.1
Multiply by .
Step 1.4.1.2.3.2
Multiply by .
Step 1.4.1.2.4
Multiply .
Step 1.4.1.2.4.1
Multiply by .
Step 1.4.1.2.4.2
Multiply by .
Step 1.4.1.2.5
Multiply .
Step 1.4.1.2.5.1
Multiply by .
Step 1.4.1.2.5.2
Multiply by .
Step 1.4.1.2.6
Multiply by .
Step 1.4.1.2.7
Multiply .
Step 1.4.1.2.7.1
Multiply by .
Step 1.4.1.2.7.2
Multiply by .
Step 1.4.1.2.8
Multiply .
Step 1.4.1.2.8.1
Multiply by .
Step 1.4.1.2.8.2
Multiply by .
Step 1.4.1.2.9
Multiply .
Step 1.4.1.2.9.1
Multiply by .
Step 1.4.1.2.9.2
Multiply by .
Step 1.4.1.2.10
Multiply .
Step 1.4.1.2.10.1
Multiply by .
Step 1.4.1.2.10.2
Multiply by .
Step 1.4.1.2.11
Multiply by .
Step 1.4.1.2.12
Multiply .
Step 1.4.1.2.12.1
Multiply by .
Step 1.4.1.2.12.2
Multiply by .
Step 1.4.1.2.13
Multiply .
Step 1.4.1.2.13.1
Multiply by .
Step 1.4.1.2.13.2
Multiply by .
Step 1.4.1.2.14
Multiply .
Step 1.4.1.2.14.1
Multiply by .
Step 1.4.1.2.14.2
Multiply by .
Step 1.4.1.2.15
Multiply .
Step 1.4.1.2.15.1
Multiply by .
Step 1.4.1.2.15.2
Multiply by .
Step 1.4.1.2.16
Multiply by .
Step 1.4.2
Add the corresponding elements.
Step 1.4.3
Simplify each element.
Step 1.4.3.1
Subtract from .
Step 1.4.3.2
Add and .
Step 1.4.3.3
Add and .
Step 1.4.3.4
Add and .
Step 1.4.3.5
Add and .
Step 1.4.3.6
Subtract from .
Step 1.4.3.7
Add and .
Step 1.4.3.8
Add and .
Step 1.4.3.9
Add and .
Step 1.4.3.10
Add and .
Step 1.4.3.11
Subtract from .
Step 1.4.3.12
Add and .
Step 1.4.3.13
Add and .
Step 1.4.3.14
Add and .
Step 1.4.3.15
Add and .
Step 1.4.3.16
Subtract from .
Step 1.5
Find the determinant.
Step 1.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Step 1.5.1.1
Consider the corresponding sign chart.
Step 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 1.5.1.3
The minor for is the determinant with row and column deleted.
Step 1.5.1.4
Multiply element by its cofactor.
Step 1.5.1.5
The minor for is the determinant with row and column deleted.
Step 1.5.1.6
Multiply element by its cofactor.
Step 1.5.1.7
The minor for is the determinant with row and column deleted.
Step 1.5.1.8
Multiply element by its cofactor.
Step 1.5.1.9
The minor for is the determinant with row and column deleted.
Step 1.5.1.10
Multiply element by its cofactor.
Step 1.5.1.11
Add the terms together.
Step 1.5.2
Multiply by .
Step 1.5.3
Evaluate .
Step 1.5.3.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Step 1.5.3.1.1
Consider the corresponding sign chart.
Step 1.5.3.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 1.5.3.1.3
The minor for is the determinant with row and column deleted.
Step 1.5.3.1.4
Multiply element by its cofactor.
Step 1.5.3.1.5
The minor for is the determinant with row and column deleted.
Step 1.5.3.1.6
Multiply element by its cofactor.
Step 1.5.3.1.7
The minor for is the determinant with row and column deleted.
Step 1.5.3.1.8
Multiply element by its cofactor.
Step 1.5.3.1.9
Add the terms together.
Step 1.5.3.2
Multiply by .
Step 1.5.3.3
Evaluate .
Step 1.5.3.3.1
The determinant of a matrix can be found using the formula .
Step 1.5.3.3.2
Simplify each term.
Step 1.5.3.3.2.1
Rewrite using the commutative property of multiplication.
Step 1.5.3.3.2.2
Multiply by by adding the exponents.
Step 1.5.3.3.2.2.1
Move .
Step 1.5.3.3.2.2.2
Multiply by .
Step 1.5.3.3.2.3
Multiply by .
Step 1.5.3.3.2.4
Multiply by .
Step 1.5.3.3.2.5
Multiply .
Step 1.5.3.3.2.5.1
Multiply by .
Step 1.5.3.3.2.5.2
Multiply by .
Step 1.5.3.4
Evaluate .
Step 1.5.3.4.1
The determinant of a matrix can be found using the formula .
Step 1.5.3.4.2
Simplify the determinant.
Step 1.5.3.4.2.1
Simplify each term.
Step 1.5.3.4.2.1.1
Multiply .
Step 1.5.3.4.2.1.1.1
Multiply by .
Step 1.5.3.4.2.1.1.2
Multiply by .
Step 1.5.3.4.2.1.2
Multiply by .
Step 1.5.3.4.2.2
Add and .
Step 1.5.3.5
Simplify the determinant.
Step 1.5.3.5.1
Add and .
Step 1.5.3.5.2
Simplify each term.
Step 1.5.3.5.2.1
Apply the distributive property.
Step 1.5.3.5.2.2
Multiply by by adding the exponents.
Step 1.5.3.5.2.2.1
Move .
Step 1.5.3.5.2.2.2
Multiply by .
Step 1.5.3.5.2.2.2.1
Raise to the power of .
Step 1.5.3.5.2.2.2.2
Use the power rule to combine exponents.
Step 1.5.3.5.2.2.3
Add and .
Step 1.5.3.5.2.3
Multiply .
Step 1.5.3.5.2.3.1
Multiply by .
Step 1.5.3.5.2.3.2
Multiply by .
Step 1.5.3.5.2.4
Multiply by .
Step 1.5.3.5.3
Add and .
Step 1.5.4
Evaluate .
Step 1.5.4.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Step 1.5.4.1.1
Consider the corresponding sign chart.
Step 1.5.4.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 1.5.4.1.3
The minor for is the determinant with row and column deleted.
Step 1.5.4.1.4
Multiply element by its cofactor.
Step 1.5.4.1.5
The minor for is the determinant with row and column deleted.
Step 1.5.4.1.6
Multiply element by its cofactor.
Step 1.5.4.1.7
The minor for is the determinant with row and column deleted.
Step 1.5.4.1.8
Multiply element by its cofactor.
Step 1.5.4.1.9
Add the terms together.
Step 1.5.4.2
Multiply by .
Step 1.5.4.3
Evaluate .
Step 1.5.4.3.1
The determinant of a matrix can be found using the formula .
Step 1.5.4.3.2
Simplify the determinant.
Step 1.5.4.3.2.1
Simplify each term.
Step 1.5.4.3.2.1.1
Multiply by .
Step 1.5.4.3.2.1.2
Multiply .
Step 1.5.4.3.2.1.2.1
Multiply by .
Step 1.5.4.3.2.1.2.2
Multiply by .
Step 1.5.4.3.2.2
Add and .
Step 1.5.4.4
Evaluate .
Step 1.5.4.4.1
The determinant of a matrix can be found using the formula .
Step 1.5.4.4.2
Simplify the determinant.
Step 1.5.4.4.2.1
Simplify each term.
Step 1.5.4.4.2.1.1
Multiply by .
Step 1.5.4.4.2.1.2
Multiply .
Step 1.5.4.4.2.1.2.1
Multiply by .
Step 1.5.4.4.2.1.2.2
Multiply by .
Step 1.5.4.4.2.2
Subtract from .
Step 1.5.4.5
Simplify the determinant.
Step 1.5.4.5.1
Subtract from .
Step 1.5.4.5.2
Simplify each term.
Step 1.5.4.5.2.1
Rewrite using the commutative property of multiplication.
Step 1.5.4.5.2.2
Multiply by by adding the exponents.
Step 1.5.4.5.2.2.1
Move .
Step 1.5.4.5.2.2.2
Multiply by .
Step 1.5.4.5.2.3
Multiply by .
Step 1.5.4.5.2.4
Multiply by .
Step 1.5.4.5.2.5
Multiply by .
Step 1.5.5
Evaluate .
Step 1.5.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Step 1.5.5.1.1
Consider the corresponding sign chart.
Step 1.5.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 1.5.5.1.3
The minor for is the determinant with row and column deleted.
Step 1.5.5.1.4
Multiply element by its cofactor.
Step 1.5.5.1.5
The minor for is the determinant with row and column deleted.
Step 1.5.5.1.6
Multiply element by its cofactor.
Step 1.5.5.1.7
The minor for is the determinant with row and column deleted.
Step 1.5.5.1.8
Multiply element by its cofactor.
Step 1.5.5.1.9
Add the terms together.
Step 1.5.5.2
Multiply by .
Step 1.5.5.3
Evaluate .
Step 1.5.5.3.1
The determinant of a matrix can be found using the formula .
Step 1.5.5.3.2
Simplify the determinant.
Step 1.5.5.3.2.1
Simplify each term.
Step 1.5.5.3.2.1.1
Multiply by .
Step 1.5.5.3.2.1.2
Multiply .
Step 1.5.5.3.2.1.2.1
Multiply by .
Step 1.5.5.3.2.1.2.2
Multiply by .
Step 1.5.5.3.2.2
Subtract from .
Step 1.5.5.4
Evaluate .
Step 1.5.5.4.1
The determinant of a matrix can be found using the formula .
Step 1.5.5.4.2
Simplify the determinant.
Step 1.5.5.4.2.1
Simplify each term.
Step 1.5.5.4.2.1.1
Multiply by .
Step 1.5.5.4.2.1.2
Multiply .
Step 1.5.5.4.2.1.2.1
Multiply by .
Step 1.5.5.4.2.1.2.2
Multiply by .
Step 1.5.5.4.2.2
Subtract from .
Step 1.5.5.5
Simplify the determinant.
Step 1.5.5.5.1
Subtract from .
Step 1.5.5.5.2
Simplify each term.
Step 1.5.5.5.2.1
Multiply by .
Step 1.5.5.5.2.2
Rewrite using the commutative property of multiplication.
Step 1.5.5.5.2.3
Multiply by by adding the exponents.
Step 1.5.5.5.2.3.1
Move .
Step 1.5.5.5.2.3.2
Multiply by .
Step 1.5.5.5.3
Reorder and .
Step 1.5.6
Simplify the determinant.
Step 1.5.6.1
Add and .
Step 1.5.6.2
Simplify each term.
Step 1.5.6.2.1
Apply the distributive property.
Step 1.5.6.2.2
Rewrite using the commutative property of multiplication.
Step 1.5.6.2.3
Rewrite using the commutative property of multiplication.
Step 1.5.6.2.4
Simplify each term.
Step 1.5.6.2.4.1
Multiply by by adding the exponents.
Step 1.5.6.2.4.1.1
Move .
Step 1.5.6.2.4.1.2
Multiply by .
Step 1.5.6.2.4.1.2.1
Raise to the power of .
Step 1.5.6.2.4.1.2.2
Use the power rule to combine exponents.
Step 1.5.6.2.4.1.3
Add and .
Step 1.5.6.2.4.2
Multiply by .
Step 1.5.6.2.4.3
Multiply by .
Step 1.5.6.2.4.4
Multiply by by adding the exponents.
Step 1.5.6.2.4.4.1
Move .
Step 1.5.6.2.4.4.2
Multiply by .
Step 1.5.6.2.4.5
Multiply by .
Step 1.5.6.2.5
Apply the distributive property.
Step 1.5.6.2.6
Rewrite as .
Step 1.5.6.2.7
Multiply by .
Step 1.5.6.2.8
Multiply by .
Step 1.5.6.3
Subtract from .
Step 1.5.6.4
Subtract from .
Step 1.5.6.5
Add and .
Step 1.6
Set the characteristic polynomial equal to to find the eigenvalues .
Step 1.7
Solve for .
Step 1.7.1
Substitute into the equation. This will make the quadratic formula easy to use.
Step 1.7.2
Factor using the perfect square rule.
Step 1.7.2.1
Rewrite as .
Step 1.7.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 1.7.2.3
Rewrite the polynomial.
Step 1.7.2.4
Factor using the perfect square trinomial rule , where and .
Step 1.7.3
Set the equal to .
Step 1.7.4
Add to both sides of the equation.
Step 1.7.5
Substitute the real value of back into the solved equation.
Step 1.7.6
Solve the equation for .
Step 1.7.6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.7.6.2
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.7.6.2.1
First, use the positive value of the to find the first solution.
Step 1.7.6.2.2
Next, use the negative value of the to find the second solution.
Step 1.7.6.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where is the null space and is the identity matrix.
Step 3
Step 3.1
Substitute the known values into the formula.
Step 3.2
Simplify.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply by each element of the matrix.
Step 3.2.1.2
Simplify each element in the matrix.
Step 3.2.1.2.1
Multiply by .
Step 3.2.1.2.2
Multiply .
Step 3.2.1.2.2.1
Multiply by .
Step 3.2.1.2.2.2
Multiply by .
Step 3.2.1.2.3
Multiply .
Step 3.2.1.2.3.1
Multiply by .
Step 3.2.1.2.3.2
Multiply by .
Step 3.2.1.2.4
Multiply .
Step 3.2.1.2.4.1
Multiply by .
Step 3.2.1.2.4.2
Multiply by .
Step 3.2.1.2.5
Multiply .
Step 3.2.1.2.5.1
Multiply by .
Step 3.2.1.2.5.2
Multiply by .
Step 3.2.1.2.6
Multiply by .
Step 3.2.1.2.7
Multiply .
Step 3.2.1.2.7.1
Multiply by .
Step 3.2.1.2.7.2
Multiply by .
Step 3.2.1.2.8
Multiply .
Step 3.2.1.2.8.1
Multiply by .
Step 3.2.1.2.8.2
Multiply by .
Step 3.2.1.2.9
Multiply .
Step 3.2.1.2.9.1
Multiply by .
Step 3.2.1.2.9.2
Multiply by .
Step 3.2.1.2.10
Multiply .
Step 3.2.1.2.10.1
Multiply by .
Step 3.2.1.2.10.2
Multiply by .
Step 3.2.1.2.11
Multiply by .
Step 3.2.1.2.12
Multiply .
Step 3.2.1.2.12.1
Multiply by .
Step 3.2.1.2.12.2
Multiply by .
Step 3.2.1.2.13
Multiply .
Step 3.2.1.2.13.1
Multiply by .
Step 3.2.1.2.13.2
Multiply by .
Step 3.2.1.2.14
Multiply .
Step 3.2.1.2.14.1
Multiply by .
Step 3.2.1.2.14.2
Multiply by .
Step 3.2.1.2.15
Multiply .
Step 3.2.1.2.15.1
Multiply by .
Step 3.2.1.2.15.2
Multiply by .
Step 3.2.1.2.16
Multiply by .
Step 3.2.2
Add the corresponding elements.
Step 3.2.3
Simplify each element.
Step 3.2.3.1
Subtract from .
Step 3.2.3.2
Add and .
Step 3.2.3.3
Add and .
Step 3.2.3.4
Add and .
Step 3.2.3.5
Add and .
Step 3.2.3.6
Subtract from .
Step 3.2.3.7
Add and .
Step 3.2.3.8
Add and .
Step 3.2.3.9
Add and .
Step 3.2.3.10
Add and .
Step 3.2.3.11
Subtract from .
Step 3.2.3.12
Add and .
Step 3.2.3.13
Add and .
Step 3.2.3.14
Add and .
Step 3.2.3.15
Add and .
Step 3.2.3.16
Subtract from .
Step 3.3
Find the null space when .
Step 3.3.1
Write as an augmented matrix for .
Step 3.3.2
Find the reduced row echelon form.
Step 3.3.2.1
Multiply each element of by to make the entry at a .
Step 3.3.2.1.1
Multiply each element of by to make the entry at a .
Step 3.3.2.1.2
Simplify .
Step 3.3.2.2
Perform the row operation to make the entry at a .
Step 3.3.2.2.1
Perform the row operation to make the entry at a .
Step 3.3.2.2.2
Simplify .
Step 3.3.2.3
Perform the row operation to make the entry at a .
Step 3.3.2.3.1
Perform the row operation to make the entry at a .
Step 3.3.2.3.2
Simplify .
Step 3.3.2.4
Multiply each element of by to make the entry at a .
Step 3.3.2.4.1
Multiply each element of by to make the entry at a .
Step 3.3.2.4.2
Simplify .
Step 3.3.2.5
Perform the row operation to make the entry at a .
Step 3.3.2.5.1
Perform the row operation to make the entry at a .
Step 3.3.2.5.2
Simplify .
Step 3.3.2.6
Perform the row operation to make the entry at a .
Step 3.3.2.6.1
Perform the row operation to make the entry at a .
Step 3.3.2.6.2
Simplify .
Step 3.3.2.7
Perform the row operation to make the entry at a .
Step 3.3.2.7.1
Perform the row operation to make the entry at a .
Step 3.3.2.7.2
Simplify .
Step 3.3.3
Use the result matrix to declare the final solution to the system of equations.
Step 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
Step 3.3.5
Write the solution as a linear combination of vectors.
Step 3.3.6
Write as a solution set.
Step 3.3.7
The solution is the set of vectors created from the free variables of the system.
Step 4
Step 4.1
Substitute the known values into the formula.
Step 4.2
Simplify.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply by each element of the matrix.
Step 4.2.1.2
Simplify each element in the matrix.
Step 4.2.1.2.1
Multiply by .
Step 4.2.1.2.2
Multiply by .
Step 4.2.1.2.3
Multiply by .
Step 4.2.1.2.4
Multiply by .
Step 4.2.1.2.5
Multiply by .
Step 4.2.1.2.6
Multiply by .
Step 4.2.1.2.7
Multiply by .
Step 4.2.1.2.8
Multiply by .
Step 4.2.1.2.9
Multiply by .
Step 4.2.1.2.10
Multiply by .
Step 4.2.1.2.11
Multiply by .
Step 4.2.1.2.12
Multiply by .
Step 4.2.1.2.13
Multiply by .
Step 4.2.1.2.14
Multiply by .
Step 4.2.1.2.15
Multiply by .
Step 4.2.1.2.16
Multiply by .
Step 4.2.2
Add the corresponding elements.
Step 4.2.3
Simplify each element.
Step 4.2.3.1
Add and .
Step 4.2.3.2
Add and .
Step 4.2.3.3
Add and .
Step 4.2.3.4
Add and .
Step 4.2.3.5
Add and .
Step 4.2.3.6
Add and .
Step 4.2.3.7
Add and .
Step 4.2.3.8
Add and .
Step 4.2.3.9
Add and .
Step 4.2.3.10
Add and .
Step 4.2.3.11
Add and .
Step 4.2.3.12
Add and .
Step 4.2.3.13
Add and .
Step 4.2.3.14
Add and .
Step 4.2.3.15
Add and .
Step 4.2.3.16
Add and .
Step 4.3
Find the null space when .
Step 4.3.1
Write as an augmented matrix for .
Step 4.3.2
Find the reduced row echelon form.
Step 4.3.2.1
Multiply each element of by to make the entry at a .
Step 4.3.2.1.1
Multiply each element of by to make the entry at a .
Step 4.3.2.1.2
Simplify .
Step 4.3.2.2
Perform the row operation to make the entry at a .
Step 4.3.2.2.1
Perform the row operation to make the entry at a .
Step 4.3.2.2.2
Simplify .
Step 4.3.2.3
Perform the row operation to make the entry at a .
Step 4.3.2.3.1
Perform the row operation to make the entry at a .
Step 4.3.2.3.2
Simplify .
Step 4.3.2.4
Multiply each element of by to make the entry at a .
Step 4.3.2.4.1
Multiply each element of by to make the entry at a .
Step 4.3.2.4.2
Simplify .
Step 4.3.2.5
Perform the row operation to make the entry at a .
Step 4.3.2.5.1
Perform the row operation to make the entry at a .
Step 4.3.2.5.2
Simplify .
Step 4.3.2.6
Perform the row operation to make the entry at a .
Step 4.3.2.6.1
Perform the row operation to make the entry at a .
Step 4.3.2.6.2
Simplify .
Step 4.3.2.7
Perform the row operation to make the entry at a .
Step 4.3.2.7.1
Perform the row operation to make the entry at a .
Step 4.3.2.7.2
Simplify .
Step 4.3.3
Use the result matrix to declare the final solution to the system of equations.
Step 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
Step 4.3.5
Write the solution as a linear combination of vectors.
Step 4.3.6
Write as a solution set.
Step 4.3.7
The solution is the set of vectors created from the free variables of the system.
Step 5
The eigenspace of is the list of the vector space for each eigenvalue.