Enter a problem...
Linear Algebra Examples
[010-110-100-10-1-10-10]
Step 1
Step 1.1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI4)
Step 1.2
The identity matrix or unit matrix of size 4 is the 4×4 square matrix with ones on the main diagonal and zeros elsewhere.
[1000010000100001]
Step 1.3
Substitute the known values into p(λ)=determinant(A-λI4).
Step 1.3.1
Substitute [010-110-100-10-1-10-10] for A.
p(λ)=determinant([010-110-100-10-1-10-10]-λI4)
Step 1.3.2
Substitute [1000010000100001] for I4.
p(λ)=determinant([010-110-100-10-1-10-10]-λ[1000010000100001])
p(λ)=determinant([010-110-100-10-1-10-10]-λ[1000010000100001])
Step 1.4
Simplify.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2
Simplify each element in the matrix.
Step 1.4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.2
Multiply -λ⋅0.
Step 1.4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.3
Multiply -λ⋅0.
Step 1.4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ00λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.4
Multiply -λ⋅0.
Step 1.4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ000λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.5
Multiply -λ⋅0.
Step 1.4.1.2.5.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.5.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.6
Multiply -1 by 1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.7
Multiply -λ⋅0.
Step 1.4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.8
Multiply -λ⋅0.
Step 1.4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ00λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.9
Multiply -λ⋅0.
Step 1.4.1.2.9.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ000λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.9.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.10
Multiply -λ⋅0.
Step 1.4.1.2.10.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.10.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.11
Multiply -1 by 1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.12
Multiply -λ⋅0.
Step 1.4.1.2.12.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.12.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.13
Multiply -λ⋅0.
Step 1.4.1.2.13.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ00λ-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.13.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.14
Multiply -λ⋅0.
Step 1.4.1.2.14.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ000λ-λ⋅0-λ⋅1])
Step 1.4.1.2.14.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ000-λ⋅0-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ000-λ⋅0-λ⋅1])
Step 1.4.1.2.15
Multiply -λ⋅0.
Step 1.4.1.2.15.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000λ-λ⋅1])
Step 1.4.1.2.15.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000-λ⋅1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000-λ⋅1])
Step 1.4.1.2.16
Multiply -1 by 1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000-λ])
Step 1.4.2
Add the corresponding elements.
p(λ)=determinant[0-λ1+00+0-1+01+00-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3
Simplify each element.
Step 1.4.3.1
Subtract λ from 0.
p(λ)=determinant[-λ1+00+0-1+01+00-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.2
Add 1 and 0.
p(λ)=determinant[-λ10+0-1+01+00-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.3
Add 0 and 0.
p(λ)=determinant[-λ10-1+01+00-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.4
Add -1 and 0.
p(λ)=determinant[-λ10-11+00-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.5
Add 1 and 0.
p(λ)=determinant[-λ10-110-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.6
Subtract λ from 0.
p(λ)=determinant[-λ10-11-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.7
Add -1 and 0.
p(λ)=determinant[-λ10-11-λ-10+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.8
Add 0 and 0.
p(λ)=determinant[-λ10-11-λ-100+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.9
Add 0 and 0.
p(λ)=determinant[-λ10-11-λ-100-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.10
Add -1 and 0.
p(λ)=determinant[-λ10-11-λ-100-10-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.11
Subtract λ from 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.12
Add -1 and 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-1+00+0-1+00-λ]
Step 1.4.3.13
Add -1 and 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10+0-1+00-λ]
Step 1.4.3.14
Add 0 and 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10-1+00-λ]
Step 1.4.3.15
Add -1 and 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10-10-λ]
Step 1.4.3.16
Subtract λ from 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10-1-λ]
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10-1-λ]
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10-1-λ]
Step 1.5
Find the determinant.
Step 1.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 1.5.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-λ-10-1-λ-10-1-λ|
Step 1.5.1.4
Multiply element a11 by its cofactor.
-λ|-λ-10-1-λ-10-1-λ|
Step 1.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-100-λ-1-1-1-λ|
Step 1.5.1.6
Multiply element a12 by its cofactor.
-1|1-100-λ-1-1-1-λ|
Step 1.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1-λ00-1-1-10-λ|
Step 1.5.1.8
Multiply element a13 by its cofactor.
0|1-λ00-1-1-10-λ|
Step 1.5.1.9
The minor for a14 is the determinant with row 1 and column 4 deleted.
|1-λ-10-1-λ-10-1|
Step 1.5.1.10
Multiply element a14 by its cofactor.
1|1-λ-10-1-λ-10-1|
Step 1.5.1.11
Add the terms together.
p(λ)=-λ|-λ-10-1-λ-10-1-λ|-1|1-100-λ-1-1-1-λ|+0|1-λ00-1-1-10-λ|+1|1-λ-10-1-λ-10-1|
p(λ)=-λ|-λ-10-1-λ-10-1-λ|-1|1-100-λ-1-1-1-λ|+0|1-λ00-1-1-10-λ|+1|1-λ-10-1-λ-10-1|
Step 1.5.2
Multiply 0 by |1-λ00-1-1-10-λ|.
p(λ)=-λ|-λ-10-1-λ-10-1-λ|-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3
Evaluate |-λ-10-1-λ-10-1-λ|.
Step 1.5.3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 1.5.3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.5.3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.3.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-λ-1-1-λ|
Step 1.5.3.1.4
Multiply element a11 by its cofactor.
-λ|-λ-1-1-λ|
Step 1.5.3.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-1-10-λ|
Step 1.5.3.1.6
Multiply element a12 by its cofactor.
1|-1-10-λ|
Step 1.5.3.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-1-λ0-1|
Step 1.5.3.1.8
Multiply element a13 by its cofactor.
0|-1-λ0-1|
Step 1.5.3.1.9
Add the terms together.
p(λ)=-λ(-λ|-λ-1-1-λ|+1|-1-10-λ|+0|-1-λ0-1|)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ|-λ-1-1-λ|+1|-1-10-λ|+0|-1-λ0-1|)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.2
Multiply 0 by |-1-λ0-1|.
p(λ)=-λ(-λ|-λ-1-1-λ|+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3
Evaluate |-λ-1-1-λ|.
Step 1.5.3.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ(-λ(-λ)---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2
Simplify each term.
Step 1.5.3.3.2.1
Rewrite using the commutative property of multiplication.
p(λ)=-λ(-λ(-1⋅-1λ⋅λ---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.2
Multiply λ by λ by adding the exponents.
Step 1.5.3.3.2.2.1
Move λ.
p(λ)=-λ(-λ(-1⋅-1(λ⋅λ)---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.2.2
Multiply λ by λ.
p(λ)=-λ(-λ(-1⋅-1λ2---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(-1⋅-1λ2---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.3
Multiply -1 by -1.
p(λ)=-λ(-λ(1λ2---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.4
Multiply λ2 by 1.
p(λ)=-λ(-λ(λ2---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.5
Multiply ---1.
Step 1.5.3.3.2.5.1
Multiply -1 by -1.
p(λ)=-λ(-λ(λ2-1⋅1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.5.2
Multiply -1 by 1.
p(λ)=-λ(-λ(λ2-1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.4
Evaluate |-1-10-λ|.
Step 1.5.3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ(λ2-1)+1(--λ+0⋅-1)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.4.2
Simplify the determinant.
Step 1.5.3.4.2.1
Simplify each term.
Step 1.5.3.4.2.1.1
Multiply --λ.
Step 1.5.3.4.2.1.1.1
Multiply -1 by -1.
p(λ)=-λ(-λ(λ2-1)+1(1λ+0⋅-1)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.4.2.1.1.2
Multiply λ by 1.
p(λ)=-λ(-λ(λ2-1)+1(λ+0⋅-1)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1(λ+0⋅-1)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.4.2.1.2
Multiply 0 by -1.
p(λ)=-λ(-λ(λ2-1)+1(λ+0)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1(λ+0)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.4.2.2
Add λ and 0.
p(λ)=-λ(-λ(λ2-1)+1λ+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1λ+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1λ+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5
Simplify the determinant.
Step 1.5.3.5.1
Add -λ(λ2-1)+1λ and 0.
p(λ)=-λ(-λ(λ2-1)+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2
Simplify each term.
Step 1.5.3.5.2.1
Apply the distributive property.
p(λ)=-λ(-λ⋅λ2-λ⋅-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.2
Multiply λ by λ2 by adding the exponents.
Step 1.5.3.5.2.2.1
Move λ2.
p(λ)=-λ(-(λ2λ)-λ⋅-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.2.2
Multiply λ2 by λ.
Step 1.5.3.5.2.2.2.1
Raise λ to the power of 1.
p(λ)=-λ(-(λ2λ1)-λ⋅-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.2.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-λ(-λ2+1-λ⋅-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ2+1-λ⋅-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.2.3
Add 2 and 1.
p(λ)=-λ(-λ3-λ⋅-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3-λ⋅-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.3
Multiply -λ⋅-1.
Step 1.5.3.5.2.3.1
Multiply -1 by -1.
p(λ)=-λ(-λ3+1λ+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.3.2
Multiply λ by 1.
p(λ)=-λ(-λ3+λ+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+λ+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.4
Multiply λ by 1.
p(λ)=-λ(-λ3+λ+λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+λ+λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.3
Add λ and λ.
p(λ)=-λ(-λ3+2λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4
Evaluate |1-100-λ-1-1-1-λ|.
Step 1.5.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Step 1.5.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.5.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.4.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|-10-1-λ|
Step 1.5.4.1.4
Multiply element a21 by its cofactor.
0|-10-1-λ|
Step 1.5.4.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|10-1-λ|
Step 1.5.4.1.6
Multiply element a22 by its cofactor.
-λ|10-1-λ|
Step 1.5.4.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1-1-1-1|
Step 1.5.4.1.8
Multiply element a23 by its cofactor.
1|1-1-1-1|
Step 1.5.4.1.9
Add the terms together.
p(λ)=-λ(-λ3+2λ)-1(0|-10-1-λ|-λ|10-1-λ|+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0|-10-1-λ|-λ|10-1-λ|+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.2
Multiply 0 by |-10-1-λ|.
p(λ)=-λ(-λ3+2λ)-1(0-λ|10-1-λ|+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.3
Evaluate |10-1-λ|.
Step 1.5.4.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ3+2λ)-1(0-λ(1(-λ)--0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.3.2
Simplify the determinant.
Step 1.5.4.3.2.1
Simplify each term.
Step 1.5.4.3.2.1.1
Multiply -λ by 1.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ--0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.3.2.1.2
Multiply --0.
Step 1.5.4.3.2.1.2.1
Multiply -1 by 0.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ-0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.3.2.1.2.2
Multiply -1 by 0.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ+0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ+0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ+0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.3.2.2
Add -λ and 0.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.4
Evaluate |1-1-1-1|.
Step 1.5.4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(1⋅-1---1))+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.4.2
Simplify the determinant.
Step 1.5.4.4.2.1
Simplify each term.
Step 1.5.4.4.2.1.1
Multiply -1 by 1.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(-1---1))+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.4.2.1.2
Multiply ---1.
Step 1.5.4.4.2.1.2.1
Multiply -1 by -1.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(-1-1⋅1))+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.4.2.1.2.2
Multiply -1 by 1.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(-1-1))+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(-1-1))+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(-1-1))+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.4.2.2
Subtract 1 from -1.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1⋅-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1⋅-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1⋅-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5
Simplify the determinant.
Step 1.5.4.5.1
Subtract λ(-λ) from 0.
p(λ)=-λ(-λ3+2λ)-1(-λ(-λ)+1⋅-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2
Simplify each term.
Step 1.5.4.5.2.1
Rewrite using the commutative property of multiplication.
p(λ)=-λ(-λ3+2λ)-1(-1⋅-1λ⋅λ+1⋅-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2.2
Multiply λ by λ by adding the exponents.
Step 1.5.4.5.2.2.1
Move λ.
p(λ)=-λ(-λ3+2λ)-1(-1⋅-1(λ⋅λ)+1⋅-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2.2.2
Multiply λ by λ.
p(λ)=-λ(-λ3+2λ)-1(-1⋅-1λ2+1⋅-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(-1⋅-1λ2+1⋅-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2.3
Multiply -1 by -1.
p(λ)=-λ(-λ3+2λ)-1(1λ2+1⋅-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2.4
Multiply λ2 by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2+1⋅-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2.5
Multiply -2 by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.5
Evaluate |1-λ-10-1-λ-10-1|.
Step 1.5.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Step 1.5.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.5.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.5.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|-λ-10-1|
Step 1.5.5.1.4
Multiply element a21 by its cofactor.
0|-λ-10-1|
Step 1.5.5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1-1-1-1|
Step 1.5.5.1.6
Multiply element a22 by its cofactor.
-1|1-1-1-1|
Step 1.5.5.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1-λ-10|
Step 1.5.5.1.8
Multiply element a23 by its cofactor.
λ|1-λ-10|
Step 1.5.5.1.9
Add the terms together.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0|-λ-10-1|-1|1-1-1-1|+λ|1-λ-10|)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0|-λ-10-1|-1|1-1-1-1|+λ|1-λ-10|)
Step 1.5.5.2
Multiply 0 by |-λ-10-1|.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1|1-1-1-1|+λ|1-λ-10|)
Step 1.5.5.3
Evaluate |1-1-1-1|.
Step 1.5.5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(1⋅-1---1)+λ|1-λ-10|)
Step 1.5.5.3.2
Simplify the determinant.
Step 1.5.5.3.2.1
Simplify each term.
Step 1.5.5.3.2.1.1
Multiply -1 by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(-1---1)+λ|1-λ-10|)
Step 1.5.5.3.2.1.2
Multiply ---1.
Step 1.5.5.3.2.1.2.1
Multiply -1 by -1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(-1-1⋅1)+λ|1-λ-10|)
Step 1.5.5.3.2.1.2.2
Multiply -1 by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(-1-1)+λ|1-λ-10|)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(-1-1)+λ|1-λ-10|)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(-1-1)+λ|1-λ-10|)
Step 1.5.5.3.2.2
Subtract 1 from -1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ|1-λ-10|)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ|1-λ-10|)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ|1-λ-10|)
Step 1.5.5.4
Evaluate |1-λ-10|.
Step 1.5.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ(1⋅0---λ))
Step 1.5.5.4.2
Simplify the determinant.
Step 1.5.5.4.2.1
Simplify each term.
Step 1.5.5.4.2.1.1
Multiply 0 by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ(0---λ))
Step 1.5.5.4.2.1.2
Multiply --λ.
Step 1.5.5.4.2.1.2.1
Multiply -1 by -1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ(0-(1λ)))
Step 1.5.5.4.2.1.2.2
Multiply λ by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ(0-λ))
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ(0-λ))
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ(0-λ))
Step 1.5.5.4.2.2
Subtract λ from 0.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ(-λ))
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ(-λ))
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1⋅-2+λ(-λ))
Step 1.5.5.5
Simplify the determinant.
Step 1.5.5.5.1
Subtract 1⋅-2 from 0.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(-1⋅-2+λ(-λ))
Step 1.5.5.5.2
Simplify each term.
Step 1.5.5.5.2.1
Multiply -1 by -2.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2+λ(-λ))
Step 1.5.5.5.2.2
Rewrite using the commutative property of multiplication.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2-λ⋅λ)
Step 1.5.5.5.2.3
Multiply λ by λ by adding the exponents.
Step 1.5.5.5.2.3.1
Move λ.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2-(λ⋅λ))
Step 1.5.5.5.2.3.2
Multiply λ by λ.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2-λ2)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2-λ2)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2-λ2)
Step 1.5.5.5.3
Reorder 2 and -λ2.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(-λ2+2)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(-λ2+2)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(-λ2+2)
Step 1.5.6
Simplify the determinant.
Step 1.5.6.1
Add -λ(-λ3+2λ)-1(λ2-2) and 0.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2
Simplify each term.
Step 1.5.6.2.1
Apply the distributive property.
p(λ)=-λ(-λ3)-λ(2λ)-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.2
Rewrite using the commutative property of multiplication.
p(λ)=-1⋅-1λ⋅λ3-λ(2λ)-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.3
Rewrite using the commutative property of multiplication.
p(λ)=-1⋅-1λ⋅λ3-1⋅2λ⋅λ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4
Simplify each term.
Step 1.5.6.2.4.1
Multiply λ by λ3 by adding the exponents.
Step 1.5.6.2.4.1.1
Move λ3.
p(λ)=-1⋅-1(λ3λ)-1⋅2λ⋅λ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.1.2
Multiply λ3 by λ.
Step 1.5.6.2.4.1.2.1
Raise λ to the power of 1.
p(λ)=-1⋅-1(λ3λ1)-1⋅2λ⋅λ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.1.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-1⋅-1λ3+1-1⋅2λ⋅λ-1(λ2-2)+1(-λ2+2)
p(λ)=-1⋅-1λ3+1-1⋅2λ⋅λ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.1.3
Add 3 and 1.
p(λ)=-1⋅-1λ4-1⋅2λ⋅λ-1(λ2-2)+1(-λ2+2)
p(λ)=-1⋅-1λ4-1⋅2λ⋅λ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.2
Multiply -1 by -1.
p(λ)=1λ4-1⋅2λ⋅λ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.3
Multiply λ4 by 1.
p(λ)=λ4-1⋅2λ⋅λ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.4
Multiply λ by λ by adding the exponents.
Step 1.5.6.2.4.4.1
Move λ.
p(λ)=λ4-1⋅2(λ⋅λ)-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.4.2
Multiply λ by λ.
p(λ)=λ4-1⋅2λ2-1(λ2-2)+1(-λ2+2)
p(λ)=λ4-1⋅2λ2-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.5
Multiply -1 by 2.
p(λ)=λ4-2λ2-1(λ2-2)+1(-λ2+2)
p(λ)=λ4-2λ2-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.5
Apply the distributive property.
p(λ)=λ4-2λ2-1λ2-1⋅-2+1(-λ2+2)
Step 1.5.6.2.6
Rewrite -1λ2 as -λ2.
p(λ)=λ4-2λ2-λ2-1⋅-2+1(-λ2+2)
Step 1.5.6.2.7
Multiply -1 by -2.
p(λ)=λ4-2λ2-λ2+2+1(-λ2+2)
Step 1.5.6.2.8
Multiply -λ2+2 by 1.
p(λ)=λ4-2λ2-λ2+2-λ2+2
p(λ)=λ4-2λ2-λ2+2-λ2+2
Step 1.5.6.3
Subtract λ2 from -2λ2.
p(λ)=λ4-3λ2+2-λ2+2
Step 1.5.6.4
Subtract λ2 from -3λ2.
p(λ)=λ4-4λ2+2+2
Step 1.5.6.5
Add 2 and 2.
p(λ)=λ4-4λ2+4
p(λ)=λ4-4λ2+4
p(λ)=λ4-4λ2+4
Step 1.6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ4-4λ2+4=0
Step 1.7
Solve for λ.
Step 1.7.1
Substitute u=λ2 into the equation. This will make the quadratic formula easy to use.
u2-4u+4=0
u=λ2
Step 1.7.2
Factor using the perfect square rule.
Step 1.7.2.1
Rewrite 4 as 22.
u2-4u+22=0
Step 1.7.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
4u=2⋅u⋅2
Step 1.7.2.3
Rewrite the polynomial.
u2-2⋅u⋅2+22=0
Step 1.7.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=u and b=2.
(u-2)2=0
(u-2)2=0
Step 1.7.3
Set the u-2 equal to 0.
u-2=0
Step 1.7.4
Add 2 to both sides of the equation.
u=2
Step 1.7.5
Substitute the real value of u=λ2 back into the solved equation.
λ2=2
Step 1.7.6
Solve the equation for λ.
Step 1.7.6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
λ=±√2
Step 1.7.6.2
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.7.6.2.1
First, use the positive value of the ± to find the first solution.
λ=√2
Step 1.7.6.2.2
Next, use the negative value of the ± to find the second solution.
λ=-√2
Step 1.7.6.2.3
The complete solution is the result of both the positive and negative portions of the solution.
λ=√2,-√2
λ=√2,-√2
λ=√2,-√2
λ=√2,-√2
λ=√2,-√2
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where N is the null space and I is the identity matrix.
εA=N(A-λI4)
Step 3
Step 3.1
Substitute the known values into the formula.
N([010-110-100-10-1-10-10]-√2[1000010000100001])
Step 3.2
Simplify.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply -√2 by each element of the matrix.
[010-110-100-10-1-10-10]+[-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2
Simplify each element in the matrix.
Step 3.2.1.2.1
Multiply -1 by 1.
[010-110-100-10-1-10-10]+[-√2-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.2
Multiply -√2⋅0.
Step 3.2.1.2.2.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√20√2-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.2.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√20-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√20-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.3
Multiply -√2⋅0.
Step 3.2.1.2.3.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√200√2-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.3.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√200-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√200-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.4
Multiply -√2⋅0.
Step 3.2.1.2.4.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√2000√2-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.4.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√2000-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√2000-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.5
Multiply -√2⋅0.
Step 3.2.1.2.5.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√20000√2-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.5.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√20000-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√20000-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.6
Multiply -1 by 1.
[010-110-100-10-1-10-10]+[-√20000-√2-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.7
Multiply -√2⋅0.
Step 3.2.1.2.7.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√20000-√20√2-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.7.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√20000-√20-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√20000-√20-√2⋅0-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.8
Multiply -√2⋅0.
Step 3.2.1.2.8.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√20000-√200√2-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.8.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√20000-√200-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√20000-√200-√2⋅0-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.9
Multiply -√2⋅0.
Step 3.2.1.2.9.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√20000-√2000√2-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.9.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√20000-√2000-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√20000-√2000-√2⋅0-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.10
Multiply -√2⋅0.
Step 3.2.1.2.10.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√20000-√20000√2-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.10.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√20000-√20000-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√20000-√20000-√2⋅1-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.11
Multiply -1 by 1.
[010-110-100-10-1-10-10]+[-√20000-√20000-√2-√2⋅0-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.12
Multiply -√2⋅0.
Step 3.2.1.2.12.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√20000-√20000-√20√2-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.12.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√20000-√20000-√20-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√20000-√20000-√20-√2⋅0-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.13
Multiply -√2⋅0.
Step 3.2.1.2.13.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√20000-√20000-√200√2-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.13.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√20000-√20000-√200-√2⋅0-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√20000-√20000-√200-√2⋅0-√2⋅0-√2⋅1]
Step 3.2.1.2.14
Multiply -√2⋅0.
Step 3.2.1.2.14.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√20000-√20000-√2000√2-√2⋅0-√2⋅1]
Step 3.2.1.2.14.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√20000-√20000-√2000-√2⋅0-√2⋅1]
[010-110-100-10-1-10-10]+[-√20000-√20000-√2000-√2⋅0-√2⋅1]
Step 3.2.1.2.15
Multiply -√2⋅0.
Step 3.2.1.2.15.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-√20000-√20000-√20000√2-√2⋅1]
Step 3.2.1.2.15.2
Multiply 0 by √2.
[010-110-100-10-1-10-10]+[-√20000-√20000-√20000-√2⋅1]
[010-110-100-10-1-10-10]+[-√20000-√20000-√20000-√2⋅1]
Step 3.2.1.2.16
Multiply -1 by 1.
[010-110-100-10-1-10-10]+[-√20000-√20000-√20000-√2]
[010-110-100-10-1-10-10]+[-√20000-√20000-√20000-√2]
[010-110-100-10-1-10-10]+[-√20000-√20000-√20000-√2]
Step 3.2.2
Add the corresponding elements.
[0-√21+00+0-1+01+00-√2-1+00+00+0-1+00-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3
Simplify each element.
Step 3.2.3.1
Subtract √2 from 0.
[-√21+00+0-1+01+00-√2-1+00+00+0-1+00-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.2
Add 1 and 0.
[-√210+0-1+01+00-√2-1+00+00+0-1+00-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.3
Add 0 and 0.
[-√210-1+01+00-√2-1+00+00+0-1+00-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.4
Add -1 and 0.
[-√210-11+00-√2-1+00+00+0-1+00-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.5
Add 1 and 0.
[-√210-110-√2-1+00+00+0-1+00-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.6
Subtract √2 from 0.
[-√210-11-√2-1+00+00+0-1+00-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.7
Add -1 and 0.
[-√210-11-√2-10+00+0-1+00-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.8
Add 0 and 0.
[-√210-11-√2-100+0-1+00-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.9
Add 0 and 0.
[-√210-11-√2-100-1+00-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.10
Add -1 and 0.
[-√210-11-√2-100-10-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.11
Subtract √2 from 0.
[-√210-11-√2-100-1-√2-1+0-1+00+0-1+00-√2]
Step 3.2.3.12
Add -1 and 0.
[-√210-11-√2-100-1-√2-1-1+00+0-1+00-√2]
Step 3.2.3.13
Add -1 and 0.
[-√210-11-√2-100-1-√2-1-10+0-1+00-√2]
Step 3.2.3.14
Add 0 and 0.
[-√210-11-√2-100-1-√2-1-10-1+00-√2]
Step 3.2.3.15
Add -1 and 0.
[-√210-11-√2-100-1-√2-1-10-10-√2]
Step 3.2.3.16
Subtract √2 from 0.
[-√210-11-√2-100-1-√2-1-10-1-√2]
[-√210-11-√2-100-1-√2-1-10-1-√2]
[-√210-11-√2-100-1-√2-1-10-1-√2]
Step 3.3
Find the null space when λ=√2.
Step 3.3.1
Write as an augmented matrix for Ax=0.
[-√210-101-√2-1000-1-√2-10-10-1-√20]
Step 3.3.2
Find the reduced row echelon form.
Step 3.3.2.1
Multiply each element of R1 by -1√2 to make the entry at 1,1 a 1.
Step 3.3.2.1.1
Multiply each element of R1 by -1√2 to make the entry at 1,1 a 1.
[-1√2(-√2)-1√2⋅1-1√2⋅0-1√2⋅-1-1√2⋅01-√2-1000-1-√2-10-10-1-√20]
Step 3.3.2.1.2
Simplify R1.
[1-√220√2201-√2-1000-1-√2-10-10-1-√20]
[1-√220√2201-√2-1000-1-√2-10-10-1-√20]
Step 3.3.2.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Step 3.3.2.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1-√220√2201-1-√2+√22-1-00-√220-00-1-√2-10-10-1-√20]
Step 3.3.2.2.2
Simplify R2.
[1-√220√2200-√22-1-√2200-1-√2-10-10-1-√20]
[1-√220√2200-√22-1-√2200-1-√2-10-10-1-√20]
Step 3.3.2.3
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
Step 3.3.2.3.1
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
[1-√220√2200-√22-1-√2200-1-√2-10-1+1⋅10-√22-1+0-√2+√220+0]
Step 3.3.2.3.2
Simplify R4.
[1-√220√2200-√22-1-√2200-1-√2-100-√22-1-√220]
[1-√220√2200-√22-1-√2200-1-√2-100-√22-1-√220]
Step 3.3.2.4
Multiply each element of R2 by -2√2 to make the entry at 2,2 a 1.
Step 3.3.2.4.1
Multiply each element of R2 by -2√2 to make the entry at 2,2 a 1.
[1-√220√220-2√2⋅0-2√2(-√22)-2√2⋅-1-2√2(-√22)-2√2⋅00-1-√2-100-√22-1-√220]
Step 3.3.2.4.2
Simplify R2.
[1-√220√22001√2100-1-√2-100-√22-1-√220]
[1-√220√22001√2100-1-√2-100-√22-1-√220]
Step 3.3.2.5
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
Step 3.3.2.5.1
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
[1-√220√22001√2100+0-1+1⋅1-√2+√2-1+1⋅10+00-√22-1-√220]
Step 3.3.2.5.2
Simplify R3.
[1-√220√22001√210000000-√22-1-√220]
[1-√220√22001√210000000-√22-1-√220]
Step 3.3.2.6
Perform the row operation R4=R4+√22R2 to make the entry at 4,2 a 0.
Step 3.3.2.6.1
Perform the row operation R4=R4+√22R2 to make the entry at 4,2 a 0.
[1-√220√22001√210000000+√22⋅0-√22+√22⋅1-1+√22√2-√22+√22⋅10+√22⋅0]
Step 3.3.2.6.2
Simplify R4.
[1-√220√22001√2100000000000]
[1-√220√22001√2100000000000]
Step 3.3.2.7
Perform the row operation R1=R1+√22R2 to make the entry at 1,2 a 0.
Step 3.3.2.7.1
Perform the row operation R1=R1+√22R2 to make the entry at 1,2 a 0.
[1+√22⋅0-√22+√22⋅10+√22√2√22+√22⋅10+√22⋅001√2100000000000]
Step 3.3.2.7.2
Simplify R1.
[101√2001√2100000000000]
[101√2001√2100000000000]
[101√2001√2100000000000]
Step 3.3.3
Use the result matrix to declare the final solution to the system of equations.
x1+x3+√2x4=0
x2+√2x3+x4=0
0=0
0=0
Step 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
[x1x2x3x4]=[-x3-√2x4-√2x3-x4x3x4]
Step 3.3.5
Write the solution as a linear combination of vectors.
[x1x2x3x4]=x3[-1-√210]+x4[-√2-101]
Step 3.3.6
Write as a solution set.
{x3[-1-√210]+x4[-√2-101]|x3,x4∈R}
Step 3.3.7
The solution is the set of vectors created from the free variables of the system.
{[-1-√210],[-√2-101]}
{[-1-√210],[-√2-101]}
{[-1-√210],[-√2-101]}
Step 4
Step 4.1
Substitute the known values into the formula.
N([010-110-100-10-1-10-10]+√2[1000010000100001])
Step 4.2
Simplify.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply √2 by each element of the matrix.
[010-110-100-10-1-10-10]+[√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2
Simplify each element in the matrix.
Step 4.2.1.2.1
Multiply √2 by 1.
[010-110-100-10-1-10-10]+[√2√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.2
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√20√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.3
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√200√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.4
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√2000√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.5
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√20000√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.6
Multiply √2 by 1.
[010-110-100-10-1-10-10]+[√20000√2√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.7
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√20000√20√2⋅0√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.8
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√20000√200√2⋅0√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.9
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√20000√2000√2⋅0√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.10
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√20000√20000√2⋅1√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.11
Multiply √2 by 1.
[010-110-100-10-1-10-10]+[√20000√20000√2√2⋅0√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.12
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√20000√20000√20√2⋅0√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.13
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√20000√20000√200√2⋅0√2⋅0√2⋅1]
Step 4.2.1.2.14
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√20000√20000√2000√2⋅0√2⋅1]
Step 4.2.1.2.15
Multiply √2 by 0.
[010-110-100-10-1-10-10]+[√20000√20000√20000√2⋅1]
Step 4.2.1.2.16
Multiply √2 by 1.
[010-110-100-10-1-10-10]+[√20000√20000√20000√2]
[010-110-100-10-1-10-10]+[√20000√20000√20000√2]
[010-110-100-10-1-10-10]+[√20000√20000√20000√2]
Step 4.2.2
Add the corresponding elements.
[0+√21+00+0-1+01+00+√2-1+00+00+0-1+00+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3
Simplify each element.
Step 4.2.3.1
Add 0 and √2.
[√21+00+0-1+01+00+√2-1+00+00+0-1+00+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.2
Add 1 and 0.
[√210+0-1+01+00+√2-1+00+00+0-1+00+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.3
Add 0 and 0.
[√210-1+01+00+√2-1+00+00+0-1+00+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.4
Add -1 and 0.
[√210-11+00+√2-1+00+00+0-1+00+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.5
Add 1 and 0.
[√210-110+√2-1+00+00+0-1+00+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.6
Add 0 and √2.
[√210-11√2-1+00+00+0-1+00+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.7
Add -1 and 0.
[√210-11√2-10+00+0-1+00+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.8
Add 0 and 0.
[√210-11√2-100+0-1+00+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.9
Add 0 and 0.
[√210-11√2-100-1+00+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.10
Add -1 and 0.
[√210-11√2-100-10+√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.11
Add 0 and √2.
[√210-11√2-100-1√2-1+0-1+00+0-1+00+√2]
Step 4.2.3.12
Add -1 and 0.
[√210-11√2-100-1√2-1-1+00+0-1+00+√2]
Step 4.2.3.13
Add -1 and 0.
[√210-11√2-100-1√2-1-10+0-1+00+√2]
Step 4.2.3.14
Add 0 and 0.
[√210-11√2-100-1√2-1-10-1+00+√2]
Step 4.2.3.15
Add -1 and 0.
[√210-11√2-100-1√2-1-10-10+√2]
Step 4.2.3.16
Add 0 and √2.
[√210-11√2-100-1√2-1-10-1√2]
[√210-11√2-100-1√2-1-10-1√2]
[√210-11√2-100-1√2-1-10-1√2]
Step 4.3
Find the null space when λ=-√2.
Step 4.3.1
Write as an augmented matrix for Ax=0.
[√210-101√2-1000-1√2-10-10-1√20]
Step 4.3.2
Find the reduced row echelon form.
Step 4.3.2.1
Multiply each element of R1 by 1√2 to make the entry at 1,1 a 1.
Step 4.3.2.1.1
Multiply each element of R1 by 1√2 to make the entry at 1,1 a 1.
[√2√21√20√2-1√20√21√2-1000-1√2-10-10-1√20]
Step 4.3.2.1.2
Simplify R1.
[1√220-√2201√2-1000-1√2-10-10-1√20]
[1√220-√2201√2-1000-1√2-10-10-1√20]
Step 4.3.2.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Step 4.3.2.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1√220-√2201-1√2-√22-1-00+√220-00-1√2-10-10-1√20]
Step 4.3.2.2.2
Simplify R2.
[1√220-√2200√22-1√2200-1√2-10-10-1√20]
[1√220-√2200√22-1√2200-1√2-10-10-1√20]
Step 4.3.2.3
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
Step 4.3.2.3.1
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
[1√220-√2200√22-1√2200-1√2-10-1+1⋅10+√22-1+0√2-√220+0]
Step 4.3.2.3.2
Simplify R4.
[1√220-√2200√22-1√2200-1√2-100√22-1√220]
[1√220-√2200√22-1√2200-1√2-100√22-1√220]
Step 4.3.2.4
Multiply each element of R2 by 2√2 to make the entry at 2,2 a 1.
Step 4.3.2.4.1
Multiply each element of R2 by 2√2 to make the entry at 2,2 a 1.
[1√220-√2202√2⋅02√2⋅√222√2⋅-12√2⋅√222√2⋅00-1√2-100√22-1√220]
Step 4.3.2.4.2
Simplify R2.
[1√220-√22001-√2100-1√2-100√22-1√220]
[1√220-√22001-√2100-1√2-100√22-1√220]
Step 4.3.2.5
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
Step 4.3.2.5.1
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
[1√220-√22001-√2100+0-1+1⋅1√2-√2-1+1⋅10+00√22-1√220]
Step 4.3.2.5.2
Simplify R3.
[1√220-√22001-√210000000√22-1√220]
[1√220-√22001-√210000000√22-1√220]
Step 4.3.2.6
Perform the row operation R4=R4-√22R2 to make the entry at 4,2 a 0.
Step 4.3.2.6.1
Perform the row operation R4=R4-√22R2 to make the entry at 4,2 a 0.
[1√220-√22001-√210000000-√22⋅0√22-√22⋅1-1-√22(-√2)√22-√22⋅10-√22⋅0]
Step 4.3.2.6.2
Simplify R4.
[1√220-√22001-√2100000000000]
[1√220-√22001-√2100000000000]
Step 4.3.2.7
Perform the row operation R1=R1-√22R2 to make the entry at 1,2 a 0.
Step 4.3.2.7.1
Perform the row operation R1=R1-√22R2 to make the entry at 1,2 a 0.
[1-√22⋅0√22-√22⋅10-√22(-√2)-√22-√22⋅10-√22⋅001-√2100000000000]
Step 4.3.2.7.2
Simplify R1.
[101-√2001-√2100000000000]
[101-√2001-√2100000000000]
[101-√2001-√2100000000000]
Step 4.3.3
Use the result matrix to declare the final solution to the system of equations.
x1+x3-√2x4=0
x2-√2x3+x4=0
0=0
0=0
Step 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
[x1x2x3x4]=[-x3+√2x4√2x3-x4x3x4]
Step 4.3.5
Write the solution as a linear combination of vectors.
[x1x2x3x4]=x3[-1√210]+x4[√2-101]
Step 4.3.6
Write as a solution set.
{x3[-1√210]+x4[√2-101]|x3,x4∈R}
Step 4.3.7
The solution is the set of vectors created from the free variables of the system.
{[-1√210],[√2-101]}
{[-1√210],[√2-101]}
{[-1√210],[√2-101]}
Step 5
The eigenspace of A is the list of the vector space for each eigenvalue.
{[-1-√210],[-√2-101],[-1√210],[√2-101]}