Linear Algebra Examples

Find the Eigenvectors/Eigenspace [[0,1,0,-1],[1,0,-1,0],[0,-1,0,-1],[-1,0,-1,0]]
[010-110-100-10-1-10-10]
Step 1
Find the eigenvalues.
Tap for more steps...
Step 1.1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI4)
Step 1.2
The identity matrix or unit matrix of size 4 is the 4×4 square matrix with ones on the main diagonal and zeros elsewhere.
[1000010000100001]
Step 1.3
Substitute the known values into p(λ)=determinant(A-λI4).
Tap for more steps...
Step 1.3.1
Substitute [010-110-100-10-1-10-10] for A.
p(λ)=determinant([010-110-100-10-1-10-10]-λI4)
Step 1.3.2
Substitute [1000010000100001] for I4.
p(λ)=determinant([010-110-100-10-1-10-10]-λ[1000010000100001])
p(λ)=determinant([010-110-100-10-1-10-10]-λ[1000010000100001])
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Simplify each term.
Tap for more steps...
Step 1.4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 1.4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.2
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0λ-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.3
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ00λ-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ00-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ00-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.4
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ000λ-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ000-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ000-λ0-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.5
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.5.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000λ-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.5.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ1-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.6
Multiply -1 by 1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.7
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0λ-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.8
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ00λ-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ00-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ00-λ0-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.9
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.9.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ000λ-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.9.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ000-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ000-λ0-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.10
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.10.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000λ-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.10.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ1-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ1-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.11
Multiply -1 by 1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.12
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.12.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0λ-λ0-λ0-λ0-λ1])
Step 1.4.1.2.12.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0-λ0-λ0-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0-λ0-λ0-λ0-λ1])
Step 1.4.1.2.13
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.13.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ00λ-λ0-λ0-λ1])
Step 1.4.1.2.13.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ00-λ0-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ00-λ0-λ0-λ1])
Step 1.4.1.2.14
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.14.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ000λ-λ0-λ1])
Step 1.4.1.2.14.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ000-λ0-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ000-λ0-λ1])
Step 1.4.1.2.15
Multiply -λ0.
Tap for more steps...
Step 1.4.1.2.15.1
Multiply 0 by -1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000λ-λ1])
Step 1.4.1.2.15.2
Multiply 0 by λ.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000-λ1])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000-λ1])
Step 1.4.1.2.16
Multiply -1 by 1.
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([010-110-100-10-1-10-10]+[-λ0000-λ0000-λ0000-λ])
Step 1.4.2
Add the corresponding elements.
p(λ)=determinant[0-λ1+00+0-1+01+00-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3
Simplify each element.
Tap for more steps...
Step 1.4.3.1
Subtract λ from 0.
p(λ)=determinant[-λ1+00+0-1+01+00-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.2
Add 1 and 0.
p(λ)=determinant[-λ10+0-1+01+00-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.3
Add 0 and 0.
p(λ)=determinant[-λ10-1+01+00-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.4
Add -1 and 0.
p(λ)=determinant[-λ10-11+00-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.5
Add 1 and 0.
p(λ)=determinant[-λ10-110-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.6
Subtract λ from 0.
p(λ)=determinant[-λ10-11-λ-1+00+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.7
Add -1 and 0.
p(λ)=determinant[-λ10-11-λ-10+00+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.8
Add 0 and 0.
p(λ)=determinant[-λ10-11-λ-100+0-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.9
Add 0 and 0.
p(λ)=determinant[-λ10-11-λ-100-1+00-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.10
Add -1 and 0.
p(λ)=determinant[-λ10-11-λ-100-10-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.11
Subtract λ from 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1+0-1+00+0-1+00-λ]
Step 1.4.3.12
Add -1 and 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-1+00+0-1+00-λ]
Step 1.4.3.13
Add -1 and 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10+0-1+00-λ]
Step 1.4.3.14
Add 0 and 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10-1+00-λ]
Step 1.4.3.15
Add -1 and 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10-10-λ]
Step 1.4.3.16
Subtract λ from 0.
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10-1-λ]
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10-1-λ]
p(λ)=determinant[-λ10-11-λ-100-1-λ-1-10-1-λ]
Step 1.5
Find the determinant.
Tap for more steps...
Step 1.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 1.5.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-λ-10-1-λ-10-1-λ|
Step 1.5.1.4
Multiply element a11 by its cofactor.
-λ|-λ-10-1-λ-10-1-λ|
Step 1.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-100-λ-1-1-1-λ|
Step 1.5.1.6
Multiply element a12 by its cofactor.
-1|1-100-λ-1-1-1-λ|
Step 1.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1-λ00-1-1-10-λ|
Step 1.5.1.8
Multiply element a13 by its cofactor.
0|1-λ00-1-1-10-λ|
Step 1.5.1.9
The minor for a14 is the determinant with row 1 and column 4 deleted.
|1-λ-10-1-λ-10-1|
Step 1.5.1.10
Multiply element a14 by its cofactor.
1|1-λ-10-1-λ-10-1|
Step 1.5.1.11
Add the terms together.
p(λ)=-λ|-λ-10-1-λ-10-1-λ|-1|1-100-λ-1-1-1-λ|+0|1-λ00-1-1-10-λ|+1|1-λ-10-1-λ-10-1|
p(λ)=-λ|-λ-10-1-λ-10-1-λ|-1|1-100-λ-1-1-1-λ|+0|1-λ00-1-1-10-λ|+1|1-λ-10-1-λ-10-1|
Step 1.5.2
Multiply 0 by |1-λ00-1-1-10-λ|.
p(λ)=-λ|-λ-10-1-λ-10-1-λ|-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3
Evaluate |-λ-10-1-λ-10-1-λ|.
Tap for more steps...
Step 1.5.3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 1.5.3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.5.3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.3.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-λ-1-1-λ|
Step 1.5.3.1.4
Multiply element a11 by its cofactor.
-λ|-λ-1-1-λ|
Step 1.5.3.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-1-10-λ|
Step 1.5.3.1.6
Multiply element a12 by its cofactor.
1|-1-10-λ|
Step 1.5.3.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-1-λ0-1|
Step 1.5.3.1.8
Multiply element a13 by its cofactor.
0|-1-λ0-1|
Step 1.5.3.1.9
Add the terms together.
p(λ)=-λ(-λ|-λ-1-1-λ|+1|-1-10-λ|+0|-1-λ0-1|)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ|-λ-1-1-λ|+1|-1-10-λ|+0|-1-λ0-1|)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.2
Multiply 0 by |-1-λ0-1|.
p(λ)=-λ(-λ|-λ-1-1-λ|+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3
Evaluate |-λ-1-1-λ|.
Tap for more steps...
Step 1.5.3.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ(-λ(-λ)---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2
Simplify each term.
Tap for more steps...
Step 1.5.3.3.2.1
Rewrite using the commutative property of multiplication.
p(λ)=-λ(-λ(-1-1λλ---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.2
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 1.5.3.3.2.2.1
Move λ.
p(λ)=-λ(-λ(-1-1(λλ)---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.2.2
Multiply λ by λ.
p(λ)=-λ(-λ(-1-1λ2---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(-1-1λ2---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.3
Multiply -1 by -1.
p(λ)=-λ(-λ(1λ2---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.4
Multiply λ2 by 1.
p(λ)=-λ(-λ(λ2---1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.5
Multiply ---1.
Tap for more steps...
Step 1.5.3.3.2.5.1
Multiply -1 by -1.
p(λ)=-λ(-λ(λ2-11)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.3.2.5.2
Multiply -1 by 1.
p(λ)=-λ(-λ(λ2-1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1|-1-10-λ|+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.4
Evaluate |-1-10-λ|.
Tap for more steps...
Step 1.5.3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ(λ2-1)+1(--λ+0-1)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.4.2
Simplify the determinant.
Tap for more steps...
Step 1.5.3.4.2.1
Simplify each term.
Tap for more steps...
Step 1.5.3.4.2.1.1
Multiply --λ.
Tap for more steps...
Step 1.5.3.4.2.1.1.1
Multiply -1 by -1.
p(λ)=-λ(-λ(λ2-1)+1(1λ+0-1)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.4.2.1.1.2
Multiply λ by 1.
p(λ)=-λ(-λ(λ2-1)+1(λ+0-1)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1(λ+0-1)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.4.2.1.2
Multiply 0 by -1.
p(λ)=-λ(-λ(λ2-1)+1(λ+0)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1(λ+0)+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.4.2.2
Add λ and 0.
p(λ)=-λ(-λ(λ2-1)+1λ+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1λ+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ(λ2-1)+1λ+0)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5
Simplify the determinant.
Tap for more steps...
Step 1.5.3.5.1
Add -λ(λ2-1)+1λ and 0.
p(λ)=-λ(-λ(λ2-1)+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2
Simplify each term.
Tap for more steps...
Step 1.5.3.5.2.1
Apply the distributive property.
p(λ)=-λ(-λλ2-λ-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.2
Multiply λ by λ2 by adding the exponents.
Tap for more steps...
Step 1.5.3.5.2.2.1
Move λ2.
p(λ)=-λ(-(λ2λ)-λ-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.2.2
Multiply λ2 by λ.
Tap for more steps...
Step 1.5.3.5.2.2.2.1
Raise λ to the power of 1.
p(λ)=-λ(-(λ2λ1)-λ-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.2.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-λ(-λ2+1-λ-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ2+1-λ-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.2.3
Add 2 and 1.
p(λ)=-λ(-λ3-λ-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3-λ-1+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.3
Multiply -λ-1.
Tap for more steps...
Step 1.5.3.5.2.3.1
Multiply -1 by -1.
p(λ)=-λ(-λ3+1λ+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.3.2
Multiply λ by 1.
p(λ)=-λ(-λ3+λ+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+λ+1λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.2.4
Multiply λ by 1.
p(λ)=-λ(-λ3+λ+λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+λ+λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.3.5.3
Add λ and λ.
p(λ)=-λ(-λ3+2λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1|1-100-λ-1-1-1-λ|+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4
Evaluate |1-100-λ-1-1-1-λ|.
Tap for more steps...
Step 1.5.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Tap for more steps...
Step 1.5.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.5.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.4.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|-10-1-λ|
Step 1.5.4.1.4
Multiply element a21 by its cofactor.
0|-10-1-λ|
Step 1.5.4.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|10-1-λ|
Step 1.5.4.1.6
Multiply element a22 by its cofactor.
-λ|10-1-λ|
Step 1.5.4.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1-1-1-1|
Step 1.5.4.1.8
Multiply element a23 by its cofactor.
1|1-1-1-1|
Step 1.5.4.1.9
Add the terms together.
p(λ)=-λ(-λ3+2λ)-1(0|-10-1-λ|-λ|10-1-λ|+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0|-10-1-λ|-λ|10-1-λ|+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.2
Multiply 0 by |-10-1-λ|.
p(λ)=-λ(-λ3+2λ)-1(0-λ|10-1-λ|+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.3
Evaluate |10-1-λ|.
Tap for more steps...
Step 1.5.4.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ3+2λ)-1(0-λ(1(-λ)--0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.3.2
Simplify the determinant.
Tap for more steps...
Step 1.5.4.3.2.1
Simplify each term.
Tap for more steps...
Step 1.5.4.3.2.1.1
Multiply -λ by 1.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ--0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.3.2.1.2
Multiply --0.
Tap for more steps...
Step 1.5.4.3.2.1.2.1
Multiply -1 by 0.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ-0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.3.2.1.2.2
Multiply -1 by 0.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ+0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ+0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ+0)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.3.2.2
Add -λ and 0.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1|1-1-1-1|)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.4
Evaluate |1-1-1-1|.
Tap for more steps...
Step 1.5.4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(1-1---1))+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.4.2
Simplify the determinant.
Tap for more steps...
Step 1.5.4.4.2.1
Simplify each term.
Tap for more steps...
Step 1.5.4.4.2.1.1
Multiply -1 by 1.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(-1---1))+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.4.2.1.2
Multiply ---1.
Tap for more steps...
Step 1.5.4.4.2.1.2.1
Multiply -1 by -1.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(-1-11))+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.4.2.1.2.2
Multiply -1 by 1.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(-1-1))+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(-1-1))+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1(-1-1))+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.4.2.2
Subtract 1 from -1.
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(0-λ(-λ)+1-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5
Simplify the determinant.
Tap for more steps...
Step 1.5.4.5.1
Subtract λ(-λ) from 0.
p(λ)=-λ(-λ3+2λ)-1(-λ(-λ)+1-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2
Simplify each term.
Tap for more steps...
Step 1.5.4.5.2.1
Rewrite using the commutative property of multiplication.
p(λ)=-λ(-λ3+2λ)-1(-1-1λλ+1-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2.2
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 1.5.4.5.2.2.1
Move λ.
p(λ)=-λ(-λ3+2λ)-1(-1-1(λλ)+1-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2.2.2
Multiply λ by λ.
p(λ)=-λ(-λ3+2λ)-1(-1-1λ2+1-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(-1-1λ2+1-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2.3
Multiply -1 by -1.
p(λ)=-λ(-λ3+2λ)-1(1λ2+1-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2.4
Multiply λ2 by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2+1-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.4.5.2.5
Multiply -2 by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1|1-λ-10-1-λ-10-1|
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1|1-λ-10-1-λ-10-1|
Step 1.5.5
Evaluate |1-λ-10-1-λ-10-1|.
Tap for more steps...
Step 1.5.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Tap for more steps...
Step 1.5.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.5.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.5.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|-λ-10-1|
Step 1.5.5.1.4
Multiply element a21 by its cofactor.
0|-λ-10-1|
Step 1.5.5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1-1-1-1|
Step 1.5.5.1.6
Multiply element a22 by its cofactor.
-1|1-1-1-1|
Step 1.5.5.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1-λ-10|
Step 1.5.5.1.8
Multiply element a23 by its cofactor.
λ|1-λ-10|
Step 1.5.5.1.9
Add the terms together.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0|-λ-10-1|-1|1-1-1-1|+λ|1-λ-10|)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0|-λ-10-1|-1|1-1-1-1|+λ|1-λ-10|)
Step 1.5.5.2
Multiply 0 by |-λ-10-1|.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1|1-1-1-1|+λ|1-λ-10|)
Step 1.5.5.3
Evaluate |1-1-1-1|.
Tap for more steps...
Step 1.5.5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(1-1---1)+λ|1-λ-10|)
Step 1.5.5.3.2
Simplify the determinant.
Tap for more steps...
Step 1.5.5.3.2.1
Simplify each term.
Tap for more steps...
Step 1.5.5.3.2.1.1
Multiply -1 by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(-1---1)+λ|1-λ-10|)
Step 1.5.5.3.2.1.2
Multiply ---1.
Tap for more steps...
Step 1.5.5.3.2.1.2.1
Multiply -1 by -1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(-1-11)+λ|1-λ-10|)
Step 1.5.5.3.2.1.2.2
Multiply -1 by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(-1-1)+λ|1-λ-10|)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(-1-1)+λ|1-λ-10|)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1(-1-1)+λ|1-λ-10|)
Step 1.5.5.3.2.2
Subtract 1 from -1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ|1-λ-10|)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ|1-λ-10|)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ|1-λ-10|)
Step 1.5.5.4
Evaluate |1-λ-10|.
Tap for more steps...
Step 1.5.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ(10---λ))
Step 1.5.5.4.2
Simplify the determinant.
Tap for more steps...
Step 1.5.5.4.2.1
Simplify each term.
Tap for more steps...
Step 1.5.5.4.2.1.1
Multiply 0 by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ(0---λ))
Step 1.5.5.4.2.1.2
Multiply --λ.
Tap for more steps...
Step 1.5.5.4.2.1.2.1
Multiply -1 by -1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ(0-(1λ)))
Step 1.5.5.4.2.1.2.2
Multiply λ by 1.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ(0-λ))
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ(0-λ))
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ(0-λ))
Step 1.5.5.4.2.2
Subtract λ from 0.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ(-λ))
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ(-λ))
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(0-1-2+λ(-λ))
Step 1.5.5.5
Simplify the determinant.
Tap for more steps...
Step 1.5.5.5.1
Subtract 1-2 from 0.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(-1-2+λ(-λ))
Step 1.5.5.5.2
Simplify each term.
Tap for more steps...
Step 1.5.5.5.2.1
Multiply -1 by -2.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2+λ(-λ))
Step 1.5.5.5.2.2
Rewrite using the commutative property of multiplication.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2-λλ)
Step 1.5.5.5.2.3
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 1.5.5.5.2.3.1
Move λ.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2-(λλ))
Step 1.5.5.5.2.3.2
Multiply λ by λ.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2-λ2)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2-λ2)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(2-λ2)
Step 1.5.5.5.3
Reorder 2 and -λ2.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(-λ2+2)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(-λ2+2)
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+0+1(-λ2+2)
Step 1.5.6
Simplify the determinant.
Tap for more steps...
Step 1.5.6.1
Add -λ(-λ3+2λ)-1(λ2-2) and 0.
p(λ)=-λ(-λ3+2λ)-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2
Simplify each term.
Tap for more steps...
Step 1.5.6.2.1
Apply the distributive property.
p(λ)=-λ(-λ3)-λ(2λ)-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.2
Rewrite using the commutative property of multiplication.
p(λ)=-1-1λλ3-λ(2λ)-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.3
Rewrite using the commutative property of multiplication.
p(λ)=-1-1λλ3-12λλ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4
Simplify each term.
Tap for more steps...
Step 1.5.6.2.4.1
Multiply λ by λ3 by adding the exponents.
Tap for more steps...
Step 1.5.6.2.4.1.1
Move λ3.
p(λ)=-1-1(λ3λ)-12λλ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.1.2
Multiply λ3 by λ.
Tap for more steps...
Step 1.5.6.2.4.1.2.1
Raise λ to the power of 1.
p(λ)=-1-1(λ3λ1)-12λλ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.1.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-1-1λ3+1-12λλ-1(λ2-2)+1(-λ2+2)
p(λ)=-1-1λ3+1-12λλ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.1.3
Add 3 and 1.
p(λ)=-1-1λ4-12λλ-1(λ2-2)+1(-λ2+2)
p(λ)=-1-1λ4-12λλ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.2
Multiply -1 by -1.
p(λ)=1λ4-12λλ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.3
Multiply λ4 by 1.
p(λ)=λ4-12λλ-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.4
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 1.5.6.2.4.4.1
Move λ.
p(λ)=λ4-12(λλ)-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.4.2
Multiply λ by λ.
p(λ)=λ4-12λ2-1(λ2-2)+1(-λ2+2)
p(λ)=λ4-12λ2-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.4.5
Multiply -1 by 2.
p(λ)=λ4-2λ2-1(λ2-2)+1(-λ2+2)
p(λ)=λ4-2λ2-1(λ2-2)+1(-λ2+2)
Step 1.5.6.2.5
Apply the distributive property.
p(λ)=λ4-2λ2-1λ2-1-2+1(-λ2+2)
Step 1.5.6.2.6
Rewrite -1λ2 as -λ2.
p(λ)=λ4-2λ2-λ2-1-2+1(-λ2+2)
Step 1.5.6.2.7
Multiply -1 by -2.
p(λ)=λ4-2λ2-λ2+2+1(-λ2+2)
Step 1.5.6.2.8
Multiply -λ2+2 by 1.
p(λ)=λ4-2λ2-λ2+2-λ2+2
p(λ)=λ4-2λ2-λ2+2-λ2+2
Step 1.5.6.3
Subtract λ2 from -2λ2.
p(λ)=λ4-3λ2+2-λ2+2
Step 1.5.6.4
Subtract λ2 from -3λ2.
p(λ)=λ4-4λ2+2+2
Step 1.5.6.5
Add 2 and 2.
p(λ)=λ4-4λ2+4
p(λ)=λ4-4λ2+4
p(λ)=λ4-4λ2+4
Step 1.6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ4-4λ2+4=0
Step 1.7
Solve for λ.
Tap for more steps...
Step 1.7.1
Substitute u=λ2 into the equation. This will make the quadratic formula easy to use.
u2-4u+4=0
u=λ2
Step 1.7.2
Factor using the perfect square rule.
Tap for more steps...
Step 1.7.2.1
Rewrite 4 as 22.
u2-4u+22=0
Step 1.7.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
4u=2u2
Step 1.7.2.3
Rewrite the polynomial.
u2-2u2+22=0
Step 1.7.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=u and b=2.
(u-2)2=0
(u-2)2=0
Step 1.7.3
Set the u-2 equal to 0.
u-2=0
Step 1.7.4
Add 2 to both sides of the equation.
u=2
Step 1.7.5
Substitute the real value of u=λ2 back into the solved equation.
λ2=2
Step 1.7.6
Solve the equation for λ.
Tap for more steps...
Step 1.7.6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
λ=±2
Step 1.7.6.2
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.7.6.2.1
First, use the positive value of the ± to find the first solution.
λ=2
Step 1.7.6.2.2
Next, use the negative value of the ± to find the second solution.
λ=-2
Step 1.7.6.2.3
The complete solution is the result of both the positive and negative portions of the solution.
λ=2,-2
λ=2,-2
λ=2,-2
λ=2,-2
λ=2,-2
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where N is the null space and I is the identity matrix.
εA=N(A-λI4)
Step 3
Find the eigenvector using the eigenvalue λ=2.
Tap for more steps...
Step 3.1
Substitute the known values into the formula.
N([010-110-100-10-1-10-10]-2[1000010000100001])
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Multiply -2 by each element of the matrix.
[010-110-100-10-1-10-10]+[-21-20-20-20-20-21-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 3.2.1.2.1
Multiply -1 by 1.
[010-110-100-10-1-10-10]+[-2-20-20-20-20-21-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.2
Multiply -20.
Tap for more steps...
Step 3.2.1.2.2.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-202-20-20-20-21-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.2.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-20-20-20-20-21-20-20-20-20-21-20-20-20-20-21]
[010-110-100-10-1-10-10]+[-20-20-20-20-21-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.3
Multiply -20.
Tap for more steps...
Step 3.2.1.2.3.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-2002-20-20-21-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.3.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-200-20-20-21-20-20-20-20-21-20-20-20-20-21]
[010-110-100-10-1-10-10]+[-200-20-20-21-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.4
Multiply -20.
Tap for more steps...
Step 3.2.1.2.4.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-20002-20-21-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.4.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-2000-20-21-20-20-20-20-21-20-20-20-20-21]
[010-110-100-10-1-10-10]+[-2000-20-21-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.5
Multiply -20.
Tap for more steps...
Step 3.2.1.2.5.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-200002-21-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.5.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-20000-21-20-20-20-20-21-20-20-20-20-21]
[010-110-100-10-1-10-10]+[-20000-21-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.6
Multiply -1 by 1.
[010-110-100-10-1-10-10]+[-20000-2-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.7
Multiply -20.
Tap for more steps...
Step 3.2.1.2.7.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-20000-202-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.7.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-20000-20-20-20-20-21-20-20-20-20-21]
[010-110-100-10-1-10-10]+[-20000-20-20-20-20-21-20-20-20-20-21]
Step 3.2.1.2.8
Multiply -20.
Tap for more steps...
Step 3.2.1.2.8.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-20000-2002-20-20-21-20-20-20-20-21]
Step 3.2.1.2.8.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-20000-200-20-20-21-20-20-20-20-21]
[010-110-100-10-1-10-10]+[-20000-200-20-20-21-20-20-20-20-21]
Step 3.2.1.2.9
Multiply -20.
Tap for more steps...
Step 3.2.1.2.9.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-20000-20002-20-21-20-20-20-20-21]
Step 3.2.1.2.9.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-20000-2000-20-21-20-20-20-20-21]
[010-110-100-10-1-10-10]+[-20000-2000-20-21-20-20-20-20-21]
Step 3.2.1.2.10
Multiply -20.
Tap for more steps...
Step 3.2.1.2.10.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-20000-200002-21-20-20-20-20-21]
Step 3.2.1.2.10.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-20000-20000-21-20-20-20-20-21]
[010-110-100-10-1-10-10]+[-20000-20000-21-20-20-20-20-21]
Step 3.2.1.2.11
Multiply -1 by 1.
[010-110-100-10-1-10-10]+[-20000-20000-2-20-20-20-20-21]
Step 3.2.1.2.12
Multiply -20.
Tap for more steps...
Step 3.2.1.2.12.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-20000-20000-202-20-20-20-21]
Step 3.2.1.2.12.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-20000-20000-20-20-20-20-21]
[010-110-100-10-1-10-10]+[-20000-20000-20-20-20-20-21]
Step 3.2.1.2.13
Multiply -20.
Tap for more steps...
Step 3.2.1.2.13.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-20000-20000-2002-20-20-21]
Step 3.2.1.2.13.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-20000-20000-200-20-20-21]
[010-110-100-10-1-10-10]+[-20000-20000-200-20-20-21]
Step 3.2.1.2.14
Multiply -20.
Tap for more steps...
Step 3.2.1.2.14.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-20000-20000-20002-20-21]
Step 3.2.1.2.14.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-20000-20000-2000-20-21]
[010-110-100-10-1-10-10]+[-20000-20000-2000-20-21]
Step 3.2.1.2.15
Multiply -20.
Tap for more steps...
Step 3.2.1.2.15.1
Multiply 0 by -1.
[010-110-100-10-1-10-10]+[-20000-20000-200002-21]
Step 3.2.1.2.15.2
Multiply 0 by 2.
[010-110-100-10-1-10-10]+[-20000-20000-20000-21]
[010-110-100-10-1-10-10]+[-20000-20000-20000-21]
Step 3.2.1.2.16
Multiply -1 by 1.
[010-110-100-10-1-10-10]+[-20000-20000-20000-2]
[010-110-100-10-1-10-10]+[-20000-20000-20000-2]
[010-110-100-10-1-10-10]+[-20000-20000-20000-2]
Step 3.2.2
Add the corresponding elements.
[0-21+00+0-1+01+00-2-1+00+00+0-1+00-2-1+0-1+00+0-1+00-2]
Step 3.2.3
Simplify each element.
Tap for more steps...
Step 3.2.3.1
Subtract 2 from 0.
[-21+00+0-1+01+00-2-1+00+00+0-1+00-2-1+0-1+00+0-1+00-2]
Step 3.2.3.2
Add 1 and 0.
[-210+0-1+01+00-2-1+00+00+0-1+00-2-1+0-1+00+0-1+00-2]
Step 3.2.3.3
Add 0 and 0.
[-210-1+01+00-2-1+00+00+0-1+00-2-1+0-1+00+0-1+00-2]
Step 3.2.3.4
Add -1 and 0.
[-210-11+00-2-1+00+00+0-1+00-2-1+0-1+00+0-1+00-2]
Step 3.2.3.5
Add 1 and 0.
[-210-110-2-1+00+00+0-1+00-2-1+0-1+00+0-1+00-2]
Step 3.2.3.6
Subtract 2 from 0.
[-210-11-2-1+00+00+0-1+00-2-1+0-1+00+0-1+00-2]
Step 3.2.3.7
Add -1 and 0.
[-210-11-2-10+00+0-1+00-2-1+0-1+00+0-1+00-2]
Step 3.2.3.8
Add 0 and 0.
[-210-11-2-100+0-1+00-2-1+0-1+00+0-1+00-2]
Step 3.2.3.9
Add 0 and 0.
[-210-11-2-100-1+00-2-1+0-1+00+0-1+00-2]
Step 3.2.3.10
Add -1 and 0.
[-210-11-2-100-10-2-1+0-1+00+0-1+00-2]
Step 3.2.3.11
Subtract 2 from 0.
[-210-11-2-100-1-2-1+0-1+00+0-1+00-2]
Step 3.2.3.12
Add -1 and 0.
[-210-11-2-100-1-2-1-1+00+0-1+00-2]
Step 3.2.3.13
Add -1 and 0.
[-210-11-2-100-1-2-1-10+0-1+00-2]
Step 3.2.3.14
Add 0 and 0.
[-210-11-2-100-1-2-1-10-1+00-2]
Step 3.2.3.15
Add -1 and 0.
[-210-11-2-100-1-2-1-10-10-2]
Step 3.2.3.16
Subtract 2 from 0.
[-210-11-2-100-1-2-1-10-1-2]
[-210-11-2-100-1-2-1-10-1-2]
[-210-11-2-100-1-2-1-10-1-2]
Step 3.3
Find the null space when λ=2.
Tap for more steps...
Step 3.3.1
Write as an augmented matrix for Ax=0.
[-210-101-2-1000-1-2-10-10-1-20]
Step 3.3.2
Find the reduced row echelon form.
Tap for more steps...
Step 3.3.2.1
Multiply each element of R1 by -12 to make the entry at 1,1 a 1.
Tap for more steps...
Step 3.3.2.1.1
Multiply each element of R1 by -12 to make the entry at 1,1 a 1.
[-12(-2)-121-120-12-1-1201-2-1000-1-2-10-10-1-20]
Step 3.3.2.1.2
Simplify R1.
[1-2202201-2-1000-1-2-10-10-1-20]
[1-2202201-2-1000-1-2-10-10-1-20]
Step 3.3.2.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 3.3.2.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1-2202201-1-2+22-1-00-220-00-1-2-10-10-1-20]
Step 3.3.2.2.2
Simplify R2.
[1-2202200-22-1-2200-1-2-10-10-1-20]
[1-2202200-22-1-2200-1-2-10-10-1-20]
Step 3.3.2.3
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
Tap for more steps...
Step 3.3.2.3.1
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
[1-2202200-22-1-2200-1-2-10-1+110-22-1+0-2+220+0]
Step 3.3.2.3.2
Simplify R4.
[1-2202200-22-1-2200-1-2-100-22-1-220]
[1-2202200-22-1-2200-1-2-100-22-1-220]
Step 3.3.2.4
Multiply each element of R2 by -22 to make the entry at 2,2 a 1.
Tap for more steps...
Step 3.3.2.4.1
Multiply each element of R2 by -22 to make the entry at 2,2 a 1.
[1-220220-220-22(-22)-22-1-22(-22)-2200-1-2-100-22-1-220]
Step 3.3.2.4.2
Simplify R2.
[1-220220012100-1-2-100-22-1-220]
[1-220220012100-1-2-100-22-1-220]
Step 3.3.2.5
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 3.3.2.5.1
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
[1-220220012100+0-1+11-2+2-1+110+00-22-1-220]
Step 3.3.2.5.2
Simplify R3.
[1-22022001210000000-22-1-220]
[1-22022001210000000-22-1-220]
Step 3.3.2.6
Perform the row operation R4=R4+22R2 to make the entry at 4,2 a 0.
Tap for more steps...
Step 3.3.2.6.1
Perform the row operation R4=R4+22R2 to make the entry at 4,2 a 0.
[1-22022001210000000+220-22+221-1+222-22+2210+220]
Step 3.3.2.6.2
Simplify R4.
[1-220220012100000000000]
[1-220220012100000000000]
Step 3.3.2.7
Perform the row operation R1=R1+22R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 3.3.2.7.1
Perform the row operation R1=R1+22R2 to make the entry at 1,2 a 0.
[1+220-22+2210+22222+2210+220012100000000000]
Step 3.3.2.7.2
Simplify R1.
[10120012100000000000]
[10120012100000000000]
[10120012100000000000]
Step 3.3.3
Use the result matrix to declare the final solution to the system of equations.
x1+x3+2x4=0
x2+2x3+x4=0
0=0
0=0
Step 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
[x1x2x3x4]=[-x3-2x4-2x3-x4x3x4]
Step 3.3.5
Write the solution as a linear combination of vectors.
[x1x2x3x4]=x3[-1-210]+x4[-2-101]
Step 3.3.6
Write as a solution set.
{x3[-1-210]+x4[-2-101]|x3,x4R}
Step 3.3.7
The solution is the set of vectors created from the free variables of the system.
{[-1-210],[-2-101]}
{[-1-210],[-2-101]}
{[-1-210],[-2-101]}
Step 4
Find the eigenvector using the eigenvalue λ=-2.
Tap for more steps...
Step 4.1
Substitute the known values into the formula.
N([010-110-100-10-1-10-10]+2[1000010000100001])
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Multiply 2 by each element of the matrix.
[010-110-100-10-1-10-10]+[21202020202120202020212020202021]
Step 4.2.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.2.1.2.1
Multiply 2 by 1.
[010-110-100-10-1-10-10]+[2202020202120202020212020202021]
Step 4.2.1.2.2
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[202020202120202020212020202021]
Step 4.2.1.2.3
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[20020202120202020212020202021]
Step 4.2.1.2.4
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[2000202120202020212020202021]
Step 4.2.1.2.5
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[200002120202020212020202021]
Step 4.2.1.2.6
Multiply 2 by 1.
[010-110-100-10-1-10-10]+[20000220202020212020202021]
Step 4.2.1.2.7
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[2000020202020212020202021]
Step 4.2.1.2.8
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[200002002020212020202021]
Step 4.2.1.2.9
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[20000200020212020202021]
Step 4.2.1.2.10
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[2000020000212020202021]
Step 4.2.1.2.11
Multiply 2 by 1.
[010-110-100-10-1-10-10]+[200002000022020202021]
Step 4.2.1.2.12
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[20000200002020202021]
Step 4.2.1.2.13
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[2000020000200202021]
Step 4.2.1.2.14
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[200002000020002021]
Step 4.2.1.2.15
Multiply 2 by 0.
[010-110-100-10-1-10-10]+[20000200002000021]
Step 4.2.1.2.16
Multiply 2 by 1.
[010-110-100-10-1-10-10]+[2000020000200002]
[010-110-100-10-1-10-10]+[2000020000200002]
[010-110-100-10-1-10-10]+[2000020000200002]
Step 4.2.2
Add the corresponding elements.
[0+21+00+0-1+01+00+2-1+00+00+0-1+00+2-1+0-1+00+0-1+00+2]
Step 4.2.3
Simplify each element.
Tap for more steps...
Step 4.2.3.1
Add 0 and 2.
[21+00+0-1+01+00+2-1+00+00+0-1+00+2-1+0-1+00+0-1+00+2]
Step 4.2.3.2
Add 1 and 0.
[210+0-1+01+00+2-1+00+00+0-1+00+2-1+0-1+00+0-1+00+2]
Step 4.2.3.3
Add 0 and 0.
[210-1+01+00+2-1+00+00+0-1+00+2-1+0-1+00+0-1+00+2]
Step 4.2.3.4
Add -1 and 0.
[210-11+00+2-1+00+00+0-1+00+2-1+0-1+00+0-1+00+2]
Step 4.2.3.5
Add 1 and 0.
[210-110+2-1+00+00+0-1+00+2-1+0-1+00+0-1+00+2]
Step 4.2.3.6
Add 0 and 2.
[210-112-1+00+00+0-1+00+2-1+0-1+00+0-1+00+2]
Step 4.2.3.7
Add -1 and 0.
[210-112-10+00+0-1+00+2-1+0-1+00+0-1+00+2]
Step 4.2.3.8
Add 0 and 0.
[210-112-100+0-1+00+2-1+0-1+00+0-1+00+2]
Step 4.2.3.9
Add 0 and 0.
[210-112-100-1+00+2-1+0-1+00+0-1+00+2]
Step 4.2.3.10
Add -1 and 0.
[210-112-100-10+2-1+0-1+00+0-1+00+2]
Step 4.2.3.11
Add 0 and 2.
[210-112-100-12-1+0-1+00+0-1+00+2]
Step 4.2.3.12
Add -1 and 0.
[210-112-100-12-1-1+00+0-1+00+2]
Step 4.2.3.13
Add -1 and 0.
[210-112-100-12-1-10+0-1+00+2]
Step 4.2.3.14
Add 0 and 0.
[210-112-100-12-1-10-1+00+2]
Step 4.2.3.15
Add -1 and 0.
[210-112-100-12-1-10-10+2]
Step 4.2.3.16
Add 0 and 2.
[210-112-100-12-1-10-12]
[210-112-100-12-1-10-12]
[210-112-100-12-1-10-12]
Step 4.3
Find the null space when λ=-2.
Tap for more steps...
Step 4.3.1
Write as an augmented matrix for Ax=0.
[210-1012-1000-12-10-10-120]
Step 4.3.2
Find the reduced row echelon form.
Tap for more steps...
Step 4.3.2.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
Tap for more steps...
Step 4.3.2.1.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[221202-120212-1000-12-10-10-120]
Step 4.3.2.1.2
Simplify R1.
[1220-22012-1000-12-10-10-120]
[1220-22012-1000-12-10-10-120]
Step 4.3.2.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 4.3.2.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1220-2201-12-22-1-00+220-00-12-10-10-120]
Step 4.3.2.2.2
Simplify R2.
[1220-220022-12200-12-10-10-120]
[1220-220022-12200-12-10-10-120]
Step 4.3.2.3
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
Tap for more steps...
Step 4.3.2.3.1
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
[1220-220022-12200-12-10-1+110+22-1+02-220+0]
Step 4.3.2.3.2
Simplify R4.
[1220-220022-12200-12-10022-1220]
[1220-220022-12200-12-10022-1220]
Step 4.3.2.4
Multiply each element of R2 by 22 to make the entry at 2,2 a 1.
Tap for more steps...
Step 4.3.2.4.1
Multiply each element of R2 by 22 to make the entry at 2,2 a 1.
[1220-220220222222-122222200-12-10022-1220]
Step 4.3.2.4.2
Simplify R2.
[1220-22001-2100-12-10022-1220]
[1220-22001-2100-12-10022-1220]
Step 4.3.2.5
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 4.3.2.5.1
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
[1220-22001-2100+0-1+112-2-1+110+0022-1220]
Step 4.3.2.5.2
Simplify R3.
[1220-22001-21000000022-1220]
[1220-22001-21000000022-1220]
Step 4.3.2.6
Perform the row operation R4=R4-22R2 to make the entry at 4,2 a 0.
Tap for more steps...
Step 4.3.2.6.1
Perform the row operation R4=R4-22R2 to make the entry at 4,2 a 0.
[1220-22001-210000000-22022-221-1-22(-2)22-2210-220]
Step 4.3.2.6.2
Simplify R4.
[1220-22001-2100000000000]
[1220-22001-2100000000000]
Step 4.3.2.7
Perform the row operation R1=R1-22R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 4.3.2.7.1
Perform the row operation R1=R1-22R2 to make the entry at 1,2 a 0.
[1-22022-2210-22(-2)-22-2210-22001-2100000000000]
Step 4.3.2.7.2
Simplify R1.
[101-2001-2100000000000]
[101-2001-2100000000000]
[101-2001-2100000000000]
Step 4.3.3
Use the result matrix to declare the final solution to the system of equations.
x1+x3-2x4=0
x2-2x3+x4=0
0=0
0=0
Step 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
[x1x2x3x4]=[-x3+2x42x3-x4x3x4]
Step 4.3.5
Write the solution as a linear combination of vectors.
[x1x2x3x4]=x3[-1210]+x4[2-101]
Step 4.3.6
Write as a solution set.
{x3[-1210]+x4[2-101]|x3,x4R}
Step 4.3.7
The solution is the set of vectors created from the free variables of the system.
{[-1210],[2-101]}
{[-1210],[2-101]}
{[-1210],[2-101]}
Step 5
The eigenspace of A is the list of the vector space for each eigenvalue.
{[-1-210],[-2-101],[-1210],[2-101]}
 [x2  12  π  xdx ]