Enter a problem...
Linear Algebra Examples
[-26-73-910-13-3]⎡⎢⎣−26−73−910−13−3⎤⎥⎦
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI3)p(λ)=determinant(A−λI3)
Step 2
The identity matrix or unit matrix of size 33 is the 3×33×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]⎡⎢⎣100010001⎤⎥⎦
Step 3
Step 3.1
Substitute [-26-73-910-13-3]⎡⎢⎣−26−73−910−13−3⎤⎥⎦ for AA.
p(λ)=determinant([-26-73-910-13-3]-λI3)p(λ)=determinant⎛⎜⎝⎡⎢⎣−26−73−910−13−3⎤⎥⎦−λI3⎞⎟⎠
Step 3.2
Substitute [100010001]⎡⎢⎣100010001⎤⎥⎦ for I3I3.
p(λ)=determinant([-26-73-910-13-3]-λ[100010001])p(λ)=determinant⎛⎜⎝⎡⎢⎣−26−73−910−13−3⎤⎥⎦−λ⎡⎢⎣100010001⎤⎥⎦⎞⎟⎠
p(λ)=determinant([-26-73-910-13-3]-λ[100010001])p(λ)=determinant⎛⎜⎝⎡⎢⎣−26−73−910−13−3⎤⎥⎦−λ⎡⎢⎣100010001⎤⎥⎦⎞⎟⎠
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ−λ by each element of the matrix.
p(λ)=determinant([-26-73-910-13-3]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣−26−73−910−13−3⎤⎥⎦+⎡⎢⎣−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1−1 by 11.
p(λ)=determinant([-26-73-910-13-3]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣−26−73−910−13−3⎤⎥⎦+⎡⎢⎣−λ−λ⋅0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.2
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.2.1
Multiply 00 by -1−1.
p(λ)=determinant([-26-73-910-13-3]+[-λ0λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣−26−73−910−13−3⎤⎥⎦+⎡⎢⎣−λ0λ−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([-26-73-910-13-3]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣−26−73−910−13−3⎤⎥⎦+⎡⎢⎣−λ0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
p(λ)=determinant([-26-73-910-13-3]+[-λ0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣−26−73−910−13−3⎤⎥⎦+⎡⎢⎣−λ0−λ⋅0−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.3
Multiply -λ⋅0−λ⋅0.
Step 4.1.2.3.1
Multiply 00 by -1−1.
p(λ)=determinant([-26-73-910-13-3]+[-λ00λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣−26−73−910−13−3⎤⎥⎦+⎡⎢⎣−λ00λ−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([-26-73-910-13-3]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant⎛⎜⎝⎡⎢⎣−26−73−910−13−3⎤⎥⎦+⎡⎢⎣−λ00−λ⋅0−λ⋅1−λ⋅0−λ⋅0−λ⋅0−λ⋅1⎤⎥⎦⎞⎟⎠
p(λ)=determinant([-26-73-910-13-3]+[-λ00-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4
Multiply -λ⋅0.
Step 4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([-26-73-910-13-3]+[-λ000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.5
Multiply -1 by 1.
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6
Multiply -λ⋅0.
Step 4.1.2.6.1
Multiply 0 by -1.
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ0λ-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6.2
Multiply 0 by λ.
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.7
Multiply -λ⋅0.
Step 4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ00λ-λ⋅0-λ⋅1])
Step 4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ00-λ⋅0-λ⋅1])
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ00-λ⋅0-λ⋅1])
Step 4.1.2.8
Multiply -λ⋅0.
Step 4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ000λ-λ⋅1])
Step 4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ000-λ⋅1])
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ000-λ⋅1])
Step 4.1.2.9
Multiply -1 by 1.
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ000-λ])
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ000-λ])
p(λ)=determinant([-26-73-910-13-3]+[-λ000-λ000-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[-2-λ6+0-7+03+0-9-λ10+0-1+03+0-3-λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 6 and 0.
p(λ)=determinant[-2-λ6-7+03+0-9-λ10+0-1+03+0-3-λ]
Step 4.3.2
Add -7 and 0.
p(λ)=determinant[-2-λ6-73+0-9-λ10+0-1+03+0-3-λ]
Step 4.3.3
Add 3 and 0.
p(λ)=determinant[-2-λ6-73-9-λ10+0-1+03+0-3-λ]
Step 4.3.4
Add 10 and 0.
p(λ)=determinant[-2-λ6-73-9-λ10-1+03+0-3-λ]
Step 4.3.5
Add -1 and 0.
p(λ)=determinant[-2-λ6-73-9-λ10-13+0-3-λ]
Step 4.3.6
Add 3 and 0.
p(λ)=determinant[-2-λ6-73-9-λ10-13-3-λ]
p(λ)=determinant[-2-λ6-73-9-λ10-13-3-λ]
p(λ)=determinant[-2-λ6-73-9-λ10-13-3-λ]
Step 5
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-9-λ103-3-λ|
Step 5.1.4
Multiply element a11 by its cofactor.
(-2-λ)|-9-λ103-3-λ|
Step 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|310-1-3-λ|
Step 5.1.6
Multiply element a12 by its cofactor.
-6|310-1-3-λ|
Step 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3-9-λ-13|
Step 5.1.8
Multiply element a13 by its cofactor.
-7|3-9-λ-13|
Step 5.1.9
Add the terms together.
p(λ)=(-2-λ)|-9-λ103-3-λ|-6|310-1-3-λ|-7|3-9-λ-13|
p(λ)=(-2-λ)|-9-λ103-3-λ|-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2
Evaluate |-9-λ103-3-λ|.
Step 5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(-2-λ)((-9-λ)(-3-λ)-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2
Simplify the determinant.
Step 5.2.2.1
Simplify each term.
Step 5.2.2.1.1
Expand (-9-λ)(-3-λ) using the FOIL Method.
Step 5.2.2.1.1.1
Apply the distributive property.
p(λ)=(-2-λ)(-9(-3-λ)-λ(-3-λ)-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.1.2
Apply the distributive property.
p(λ)=(-2-λ)(-9⋅-3-9(-λ)-λ(-3-λ)-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.1.3
Apply the distributive property.
p(λ)=(-2-λ)(-9⋅-3-9(-λ)-λ⋅-3-λ(-λ)-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
p(λ)=(-2-λ)(-9⋅-3-9(-λ)-λ⋅-3-λ(-λ)-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.2
Simplify and combine like terms.
Step 5.2.2.1.2.1
Simplify each term.
Step 5.2.2.1.2.1.1
Multiply -9 by -3.
p(λ)=(-2-λ)(27-9(-λ)-λ⋅-3-λ(-λ)-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.2.1.2
Multiply -1 by -9.
p(λ)=(-2-λ)(27+9λ-λ⋅-3-λ(-λ)-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.2.1.3
Multiply -3 by -1.
p(λ)=(-2-λ)(27+9λ+3λ-λ(-λ)-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=(-2-λ)(27+9λ+3λ-1⋅-1λ⋅λ-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 5.2.2.1.2.1.5.1
Move λ.
p(λ)=(-2-λ)(27+9λ+3λ-1⋅-1(λ⋅λ)-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=(-2-λ)(27+9λ+3λ-1⋅-1λ2-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
p(λ)=(-2-λ)(27+9λ+3λ-1⋅-1λ2-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.2.1.6
Multiply -1 by -1.
p(λ)=(-2-λ)(27+9λ+3λ+1λ2-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=(-2-λ)(27+9λ+3λ+λ2-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
p(λ)=(-2-λ)(27+9λ+3λ+λ2-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.2.2
Add 9λ and 3λ.
p(λ)=(-2-λ)(27+12λ+λ2-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
p(λ)=(-2-λ)(27+12λ+λ2-3⋅10)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.1.3
Multiply -3 by 10.
p(λ)=(-2-λ)(27+12λ+λ2-30)-6|310-1-3-λ|-7|3-9-λ-13|
p(λ)=(-2-λ)(27+12λ+λ2-30)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.2
Subtract 30 from 27.
p(λ)=(-2-λ)(12λ+λ2-3)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.2.2.3
Reorder 12λ and λ2.
p(λ)=(-2-λ)(λ2+12λ-3)-6|310-1-3-λ|-7|3-9-λ-13|
p(λ)=(-2-λ)(λ2+12λ-3)-6|310-1-3-λ|-7|3-9-λ-13|
p(λ)=(-2-λ)(λ2+12λ-3)-6|310-1-3-λ|-7|3-9-λ-13|
Step 5.3
Evaluate |310-1-3-λ|.
Step 5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(-2-λ)(λ2+12λ-3)-6(3(-3-λ)-(-1⋅10))-7|3-9-λ-13|
Step 5.3.2
Simplify the determinant.
Step 5.3.2.1
Simplify each term.
Step 5.3.2.1.1
Apply the distributive property.
p(λ)=(-2-λ)(λ2+12λ-3)-6(3⋅-3+3(-λ)-(-1⋅10))-7|3-9-λ-13|
Step 5.3.2.1.2
Multiply 3 by -3.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-9+3(-λ)-(-1⋅10))-7|3-9-λ-13|
Step 5.3.2.1.3
Multiply -1 by 3.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-9-3λ-(-1⋅10))-7|3-9-λ-13|
Step 5.3.2.1.4
Multiply -(-1⋅10).
Step 5.3.2.1.4.1
Multiply -1 by 10.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-9-3λ--10)-7|3-9-λ-13|
Step 5.3.2.1.4.2
Multiply -1 by -10.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-9-3λ+10)-7|3-9-λ-13|
p(λ)=(-2-λ)(λ2+12λ-3)-6(-9-3λ+10)-7|3-9-λ-13|
p(λ)=(-2-λ)(λ2+12λ-3)-6(-9-3λ+10)-7|3-9-λ-13|
Step 5.3.2.2
Add -9 and 10.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7|3-9-λ-13|
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7|3-9-λ-13|
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7|3-9-λ-13|
Step 5.4
Evaluate |3-9-λ-13|.
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(3⋅3--(-9-λ))
Step 5.4.2
Simplify the determinant.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Multiply 3 by 3.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(9--(-9-λ))
Step 5.4.2.1.2
Apply the distributive property.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(9-(--9--λ))
Step 5.4.2.1.3
Multiply -1 by -9.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(9-(9--λ))
Step 5.4.2.1.4
Multiply --λ.
Step 5.4.2.1.4.1
Multiply -1 by -1.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(9-(9+1λ))
Step 5.4.2.1.4.2
Multiply λ by 1.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(9-(9+λ))
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(9-(9+λ))
Step 5.4.2.1.5
Apply the distributive property.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(9-1⋅9-λ)
Step 5.4.2.1.6
Multiply -1 by 9.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(9-9-λ)
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(9-9-λ)
Step 5.4.2.2
Subtract 9 from 9.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(0-λ)
Step 5.4.2.3
Subtract λ from 0.
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(-λ)
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(-λ)
p(λ)=(-2-λ)(λ2+12λ-3)-6(-3λ+1)-7(-λ)
Step 5.5
Simplify the determinant.
Step 5.5.1
Simplify each term.
Step 5.5.1.1
Expand (-2-λ)(λ2+12λ-3) by multiplying each term in the first expression by each term in the second expression.
p(λ)=-2λ2-2(12λ)-2⋅-3-λ⋅λ2-λ(12λ)-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2
Simplify each term.
Step 5.5.1.2.1
Multiply 12 by -2.
p(λ)=-2λ2-24λ-2⋅-3-λ⋅λ2-λ(12λ)-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2.2
Multiply -2 by -3.
p(λ)=-2λ2-24λ+6-λ⋅λ2-λ(12λ)-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2.3
Multiply λ by λ2 by adding the exponents.
Step 5.5.1.2.3.1
Move λ2.
p(λ)=-2λ2-24λ+6-(λ2λ)-λ(12λ)-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2.3.2
Multiply λ2 by λ.
Step 5.5.1.2.3.2.1
Raise λ to the power of 1.
p(λ)=-2λ2-24λ+6-(λ2λ1)-λ(12λ)-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-2λ2-24λ+6-λ2+1-λ(12λ)-λ⋅-3-6(-3λ+1)-7(-λ)
p(λ)=-2λ2-24λ+6-λ2+1-λ(12λ)-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2.3.3
Add 2 and 1.
p(λ)=-2λ2-24λ+6-λ3-λ(12λ)-λ⋅-3-6(-3λ+1)-7(-λ)
p(λ)=-2λ2-24λ+6-λ3-λ(12λ)-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2.4
Rewrite using the commutative property of multiplication.
p(λ)=-2λ2-24λ+6-λ3-1⋅12λ⋅λ-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2.5
Multiply λ by λ by adding the exponents.
Step 5.5.1.2.5.1
Move λ.
p(λ)=-2λ2-24λ+6-λ3-1⋅12(λ⋅λ)-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2.5.2
Multiply λ by λ.
p(λ)=-2λ2-24λ+6-λ3-1⋅12λ2-λ⋅-3-6(-3λ+1)-7(-λ)
p(λ)=-2λ2-24λ+6-λ3-1⋅12λ2-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2.6
Multiply -1 by 12.
p(λ)=-2λ2-24λ+6-λ3-12λ2-λ⋅-3-6(-3λ+1)-7(-λ)
Step 5.5.1.2.7
Multiply -3 by -1.
p(λ)=-2λ2-24λ+6-λ3-12λ2+3λ-6(-3λ+1)-7(-λ)
p(λ)=-2λ2-24λ+6-λ3-12λ2+3λ-6(-3λ+1)-7(-λ)
Step 5.5.1.3
Subtract 12λ2 from -2λ2.
p(λ)=-14λ2-24λ+6-λ3+3λ-6(-3λ+1)-7(-λ)
Step 5.5.1.4
Add -24λ and 3λ.
p(λ)=-14λ2-21λ+6-λ3-6(-3λ+1)-7(-λ)
Step 5.5.1.5
Apply the distributive property.
p(λ)=-14λ2-21λ+6-λ3-6(-3λ)-6⋅1-7(-λ)
Step 5.5.1.6
Multiply -3 by -6.
p(λ)=-14λ2-21λ+6-λ3+18λ-6⋅1-7(-λ)
Step 5.5.1.7
Multiply -6 by 1.
p(λ)=-14λ2-21λ+6-λ3+18λ-6-7(-λ)
Step 5.5.1.8
Multiply -1 by -7.
p(λ)=-14λ2-21λ+6-λ3+18λ-6+7λ
p(λ)=-14λ2-21λ+6-λ3+18λ-6+7λ
Step 5.5.2
Combine the opposite terms in -14λ2-21λ+6-λ3+18λ-6+7λ.
Step 5.5.2.1
Subtract 6 from 6.
p(λ)=-14λ2-21λ-λ3+18λ+0+7λ
Step 5.5.2.2
Add -14λ2-21λ-λ3+18λ and 0.
p(λ)=-14λ2-21λ-λ3+18λ+7λ
p(λ)=-14λ2-21λ-λ3+18λ+7λ
Step 5.5.3
Add -21λ and 18λ.
p(λ)=-14λ2-λ3-3λ+7λ
Step 5.5.4
Add -3λ and 7λ.
p(λ)=-14λ2-λ3+4λ
Step 5.5.5
Reorder -14λ2 and -λ3.
p(λ)=-λ3-14λ2+4λ
p(λ)=-λ3-14λ2+4λ
p(λ)=-λ3-14λ2+4λ