Enter a problem...
Linear Algebra Examples
[1111][1111]
Step 1
Step 1.1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI2)
Step 1.2
The identity matrix or unit matrix of size 2 is the 2×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001]
Step 1.3
Substitute the known values into p(λ)=determinant(A-λI2).
Step 1.3.1
Substitute [1111] for A.
p(λ)=determinant([1111]-λI2)
Step 1.3.2
Substitute [1001] for I2.
p(λ)=determinant([1111]-λ[1001])
p(λ)=determinant([1111]-λ[1001])
Step 1.4
Simplify.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([1111]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2
Simplify each element in the matrix.
Step 1.4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([1111]+[-λ-λ⋅0-λ⋅0-λ⋅1])
Step 1.4.1.2.2
Multiply -λ⋅0.
Step 1.4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([1111]+[-λ0λ-λ⋅0-λ⋅1])
Step 1.4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([1111]+[-λ0-λ⋅0-λ⋅1])
p(λ)=determinant([1111]+[-λ0-λ⋅0-λ⋅1])
Step 1.4.1.2.3
Multiply -λ⋅0.
Step 1.4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([1111]+[-λ00λ-λ⋅1])
Step 1.4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([1111]+[-λ00-λ⋅1])
p(λ)=determinant([1111]+[-λ00-λ⋅1])
Step 1.4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([1111]+[-λ00-λ])
p(λ)=determinant([1111]+[-λ00-λ])
p(λ)=determinant([1111]+[-λ00-λ])
Step 1.4.2
Add the corresponding elements.
p(λ)=determinant[1-λ1+01+01-λ]
Step 1.4.3
Simplify each element.
Step 1.4.3.1
Add 1 and 0.
p(λ)=determinant[1-λ11+01-λ]
Step 1.4.3.2
Add 1 and 0.
p(λ)=determinant[1-λ111-λ]
p(λ)=determinant[1-λ111-λ]
p(λ)=determinant[1-λ111-λ]
Step 1.5
Find the determinant.
Step 1.5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(1-λ)(1-λ)-1⋅1
Step 1.5.2
Simplify the determinant.
Step 1.5.2.1
Simplify each term.
Step 1.5.2.1.1
Expand (1-λ)(1-λ) using the FOIL Method.
Step 1.5.2.1.1.1
Apply the distributive property.
p(λ)=1(1-λ)-λ(1-λ)-1⋅1
Step 1.5.2.1.1.2
Apply the distributive property.
p(λ)=1⋅1+1(-λ)-λ(1-λ)-1⋅1
Step 1.5.2.1.1.3
Apply the distributive property.
p(λ)=1⋅1+1(-λ)-λ⋅1-λ(-λ)-1⋅1
p(λ)=1⋅1+1(-λ)-λ⋅1-λ(-λ)-1⋅1
Step 1.5.2.1.2
Simplify and combine like terms.
Step 1.5.2.1.2.1
Simplify each term.
Step 1.5.2.1.2.1.1
Multiply 1 by 1.
p(λ)=1+1(-λ)-λ⋅1-λ(-λ)-1⋅1
Step 1.5.2.1.2.1.2
Multiply -λ by 1.
p(λ)=1-λ-λ⋅1-λ(-λ)-1⋅1
Step 1.5.2.1.2.1.3
Multiply -1 by 1.
p(λ)=1-λ-λ-λ(-λ)-1⋅1
Step 1.5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=1-λ-λ-1⋅-1λ⋅λ-1⋅1
Step 1.5.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 1.5.2.1.2.1.5.1
Move λ.
p(λ)=1-λ-λ-1⋅-1(λ⋅λ)-1⋅1
Step 1.5.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=1-λ-λ-1⋅-1λ2-1⋅1
p(λ)=1-λ-λ-1⋅-1λ2-1⋅1
Step 1.5.2.1.2.1.6
Multiply -1 by -1.
p(λ)=1-λ-λ+1λ2-1⋅1
Step 1.5.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=1-λ-λ+λ2-1⋅1
p(λ)=1-λ-λ+λ2-1⋅1
Step 1.5.2.1.2.2
Subtract λ from -λ.
p(λ)=1-2λ+λ2-1⋅1
p(λ)=1-2λ+λ2-1⋅1
Step 1.5.2.1.3
Multiply -1 by 1.
p(λ)=1-2λ+λ2-1
p(λ)=1-2λ+λ2-1
Step 1.5.2.2
Combine the opposite terms in 1-2λ+λ2-1.
Step 1.5.2.2.1
Subtract 1 from 1.
p(λ)=-2λ+λ2+0
Step 1.5.2.2.2
Add -2λ+λ2 and 0.
p(λ)=-2λ+λ2
p(λ)=-2λ+λ2
Step 1.5.2.3
Reorder -2λ and λ2.
p(λ)=λ2-2λ
p(λ)=λ2-2λ
p(λ)=λ2-2λ
Step 1.6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ2-2λ=0
Step 1.7
Solve for λ.
Step 1.7.1
Factor λ out of λ2-2λ.
Step 1.7.1.1
Factor λ out of λ2.
λ⋅λ-2λ=0
Step 1.7.1.2
Factor λ out of -2λ.
λ⋅λ+λ⋅-2=0
Step 1.7.1.3
Factor λ out of λ⋅λ+λ⋅-2.
λ(λ-2)=0
λ(λ-2)=0
Step 1.7.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
λ=0
λ-2=0
Step 1.7.3
Set λ equal to 0.
λ=0
Step 1.7.4
Set λ-2 equal to 0 and solve for λ.
Step 1.7.4.1
Set λ-2 equal to 0.
λ-2=0
Step 1.7.4.2
Add 2 to both sides of the equation.
λ=2
λ=2
Step 1.7.5
The final solution is all the values that make λ(λ-2)=0 true.
λ=0,2
λ=0,2
λ=0,2
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where N is the null space and I is the identity matrix.
εA=N(A-λI2)
Step 3
Step 3.1
Substitute the known values into the formula.
N([1111]+0[1001])
Step 3.2
Simplify.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply 0 by each element of the matrix.
[1111]+[0⋅10⋅00⋅00⋅1]
Step 3.2.1.2
Simplify each element in the matrix.
Step 3.2.1.2.1
Multiply 0 by 1.
[1111]+[00⋅00⋅00⋅1]
Step 3.2.1.2.2
Multiply 0 by 0.
[1111]+[000⋅00⋅1]
Step 3.2.1.2.3
Multiply 0 by 0.
[1111]+[0000⋅1]
Step 3.2.1.2.4
Multiply 0 by 1.
[1111]+[0000]
[1111]+[0000]
[1111]+[0000]
Step 3.2.2
Adding any matrix to a null matrix is the matrix itself.
Step 3.2.2.1
Add the corresponding elements.
[1+01+01+01+0]
Step 3.2.2.2
Simplify each element.
Step 3.2.2.2.1
Add 1 and 0.
[11+01+01+0]
Step 3.2.2.2.2
Add 1 and 0.
[111+01+0]
Step 3.2.2.2.3
Add 1 and 0.
[1111+0]
Step 3.2.2.2.4
Add 1 and 0.
[1111]
[1111]
[1111]
[1111]
Step 3.3
Find the null space when λ=0.
Step 3.3.1
Write as an augmented matrix for Ax=0.
[110110]
Step 3.3.2
Find the reduced row echelon form.
Step 3.3.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Step 3.3.2.1.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1101-11-10-0]
Step 3.3.2.1.2
Simplify R2.
[110000]
[110000]
[110000]
Step 3.3.3
Use the result matrix to declare the final solution to the system of equations.
x+y=0
0=0
Step 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xy]=[-yy]
Step 3.3.5
Write the solution as a linear combination of vectors.
[xy]=y[-11]
Step 3.3.6
Write as a solution set.
{y[-11]|y∈R}
Step 3.3.7
The solution is the set of vectors created from the free variables of the system.
{[-11]}
{[-11]}
{[-11]}
Step 4
Step 4.1
Substitute the known values into the formula.
N([1111]-2[1001])
Step 4.2
Simplify.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply -2 by each element of the matrix.
[1111]+[-2⋅1-2⋅0-2⋅0-2⋅1]
Step 4.2.1.2
Simplify each element in the matrix.
Step 4.2.1.2.1
Multiply -2 by 1.
[1111]+[-2-2⋅0-2⋅0-2⋅1]
Step 4.2.1.2.2
Multiply -2 by 0.
[1111]+[-20-2⋅0-2⋅1]
Step 4.2.1.2.3
Multiply -2 by 0.
[1111]+[-200-2⋅1]
Step 4.2.1.2.4
Multiply -2 by 1.
[1111]+[-200-2]
[1111]+[-200-2]
[1111]+[-200-2]
Step 4.2.2
Add the corresponding elements.
[1-21+01+01-2]
Step 4.2.3
Simplify each element.
Step 4.2.3.1
Subtract 2 from 1.
[-11+01+01-2]
Step 4.2.3.2
Add 1 and 0.
[-111+01-2]
Step 4.2.3.3
Add 1 and 0.
[-1111-2]
Step 4.2.3.4
Subtract 2 from 1.
[-111-1]
[-111-1]
[-111-1]
Step 4.3
Find the null space when λ=2.
Step 4.3.1
Write as an augmented matrix for Ax=0.
[-1101-10]
Step 4.3.2
Find the reduced row echelon form.
Step 4.3.2.1
Multiply each element of R1 by -1 to make the entry at 1,1 a 1.
Step 4.3.2.1.1
Multiply each element of R1 by -1 to make the entry at 1,1 a 1.
[--1-1⋅1-01-10]
Step 4.3.2.1.2
Simplify R1.
[1-101-10]
[1-101-10]
Step 4.3.2.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Step 4.3.2.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1-101-1-1+10-0]
Step 4.3.2.2.2
Simplify R2.
[1-10000]
[1-10000]
[1-10000]
Step 4.3.3
Use the result matrix to declare the final solution to the system of equations.
x-y=0
0=0
Step 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
[xy]=[yy]
Step 4.3.5
Write the solution as a linear combination of vectors.
[xy]=y[11]
Step 4.3.6
Write as a solution set.
{y[11]|y∈R}
Step 4.3.7
The solution is the set of vectors created from the free variables of the system.
{[11]}
{[11]}
{[11]}
Step 5
The eigenspace of A is the list of the vector space for each eigenvalue.
{[-11],[11]}