Enter a problem...
Linear Algebra Examples
Step 1
Set up the formula to find the characteristic equation .
Step 2
The identity matrix or unit matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere.
Step 3
Step 3.1
Substitute for .
Step 3.2
Substitute for .
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply by each element of the matrix.
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply by .
Step 4.1.2.2
Multiply .
Step 4.1.2.2.1
Multiply by .
Step 4.1.2.2.2
Multiply by .
Step 4.1.2.3
Multiply .
Step 4.1.2.3.1
Multiply by .
Step 4.1.2.3.2
Multiply by .
Step 4.1.2.4
Multiply .
Step 4.1.2.4.1
Multiply by .
Step 4.1.2.4.2
Multiply by .
Step 4.1.2.5
Multiply by .
Step 4.1.2.6
Multiply .
Step 4.1.2.6.1
Multiply by .
Step 4.1.2.6.2
Multiply by .
Step 4.1.2.7
Multiply .
Step 4.1.2.7.1
Multiply by .
Step 4.1.2.7.2
Multiply by .
Step 4.1.2.8
Multiply .
Step 4.1.2.8.1
Multiply by .
Step 4.1.2.8.2
Multiply by .
Step 4.1.2.9
Multiply by .
Step 4.2
Add the corresponding elements.
Step 4.3
Simplify each element.
Step 4.3.1
Add and .
Step 4.3.2
Add and .
Step 4.3.3
Add and .
Step 4.3.4
Add and .
Step 4.3.5
Add and .
Step 4.3.6
Add and .
Step 5
Step 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 5.1.3
The minor for is the determinant with row and column deleted.
Step 5.1.4
Multiply element by its cofactor.
Step 5.1.5
The minor for is the determinant with row and column deleted.
Step 5.1.6
Multiply element by its cofactor.
Step 5.1.7
The minor for is the determinant with row and column deleted.
Step 5.1.8
Multiply element by its cofactor.
Step 5.1.9
Add the terms together.
Step 5.2
Evaluate .
Step 5.2.1
The determinant of a matrix can be found using the formula .
Step 5.2.2
Simplify the determinant.
Step 5.2.2.1
Simplify each term.
Step 5.2.2.1.1
Expand using the FOIL Method.
Step 5.2.2.1.1.1
Apply the distributive property.
Step 5.2.2.1.1.2
Apply the distributive property.
Step 5.2.2.1.1.3
Apply the distributive property.
Step 5.2.2.1.2
Simplify and combine like terms.
Step 5.2.2.1.2.1
Simplify each term.
Step 5.2.2.1.2.1.1
Multiply .
Step 5.2.2.1.2.1.1.1
Combine and .
Step 5.2.2.1.2.1.1.2
Multiply by .
Step 5.2.2.1.2.1.2
Combine and .
Step 5.2.2.1.2.1.3
Multiply by .
Step 5.2.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 5.2.2.1.2.1.5
Multiply by by adding the exponents.
Step 5.2.2.1.2.1.5.1
Move .
Step 5.2.2.1.2.1.5.2
Multiply by .
Step 5.2.2.1.2.1.6
Multiply by .
Step 5.2.2.1.2.1.7
Multiply by .
Step 5.2.2.1.2.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.2.1.2.3
Combine and .
Step 5.2.2.1.2.4
Combine the numerators over the common denominator.
Step 5.2.2.1.2.5
Combine the numerators over the common denominator.
Step 5.2.2.1.2.6
To write as a fraction with a common denominator, multiply by .
Step 5.2.2.1.2.7
Combine and .
Step 5.2.2.1.2.8
Combine the numerators over the common denominator.
Step 5.2.2.1.3
Simplify the numerator.
Step 5.2.2.1.3.1
Multiply by .
Step 5.2.2.1.3.2
Move to the left of .
Step 5.2.2.1.3.3
Subtract from .
Step 5.2.2.1.3.4
Factor by grouping.
Step 5.2.2.1.3.4.1
Reorder terms.
Step 5.2.2.1.3.4.2
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 5.2.2.1.3.4.2.1
Factor out of .
Step 5.2.2.1.3.4.2.2
Rewrite as plus
Step 5.2.2.1.3.4.2.3
Apply the distributive property.
Step 5.2.2.1.3.4.3
Factor out the greatest common factor from each group.
Step 5.2.2.1.3.4.3.1
Group the first two terms and the last two terms.
Step 5.2.2.1.3.4.3.2
Factor out the greatest common factor (GCF) from each group.
Step 5.2.2.1.3.4.4
Factor the polynomial by factoring out the greatest common factor, .
Step 5.2.2.1.4
Multiply .
Step 5.2.2.1.4.1
Multiply by .
Step 5.2.2.1.4.2
Combine and .
Step 5.2.2.1.4.3
Multiply by .
Step 5.2.2.2
Combine the numerators over the common denominator.
Step 5.2.2.3
Simplify each term.
Step 5.2.2.3.1
Expand using the FOIL Method.
Step 5.2.2.3.1.1
Apply the distributive property.
Step 5.2.2.3.1.2
Apply the distributive property.
Step 5.2.2.3.1.3
Apply the distributive property.
Step 5.2.2.3.2
Simplify and combine like terms.
Step 5.2.2.3.2.1
Simplify each term.
Step 5.2.2.3.2.1.1
Multiply by by adding the exponents.
Step 5.2.2.3.2.1.1.1
Move .
Step 5.2.2.3.2.1.1.2
Multiply by .
Step 5.2.2.3.2.1.2
Multiply by .
Step 5.2.2.3.2.1.3
Multiply by .
Step 5.2.2.3.2.2
Subtract from .
Step 5.2.2.4
Add and .
Step 5.2.2.5
Factor by grouping.
Step 5.2.2.5.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 5.2.2.5.1.1
Factor out of .
Step 5.2.2.5.1.2
Rewrite as plus
Step 5.2.2.5.1.3
Apply the distributive property.
Step 5.2.2.5.2
Factor out the greatest common factor from each group.
Step 5.2.2.5.2.1
Group the first two terms and the last two terms.
Step 5.2.2.5.2.2
Factor out the greatest common factor (GCF) from each group.
Step 5.2.2.5.3
Factor the polynomial by factoring out the greatest common factor, .
Step 5.3
Evaluate .
Step 5.3.1
The determinant of a matrix can be found using the formula .
Step 5.3.2
Simplify the determinant.
Step 5.3.2.1
Simplify each term.
Step 5.3.2.1.1
Apply the distributive property.
Step 5.3.2.1.2
Multiply by .
Step 5.3.2.1.3
Multiply by .
Step 5.3.2.1.4
Cancel the common factor of .
Step 5.3.2.1.4.1
Move the leading negative in into the numerator.
Step 5.3.2.1.4.2
Factor out of .
Step 5.3.2.1.4.3
Cancel the common factor.
Step 5.3.2.1.4.4
Rewrite the expression.
Step 5.3.2.1.5
Multiply by .
Step 5.3.2.2
Add and .
Step 5.4
Evaluate .
Step 5.4.1
The determinant of a matrix can be found using the formula .
Step 5.4.2
Simplify the determinant.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Multiply by .
Step 5.4.2.1.2
Apply the distributive property.
Step 5.4.2.1.3
Cancel the common factor of .
Step 5.4.2.1.3.1
Factor out of .
Step 5.4.2.1.3.2
Cancel the common factor.
Step 5.4.2.1.3.3
Rewrite the expression.
Step 5.4.2.1.4
Multiply by .
Step 5.4.2.1.5
Multiply by .
Step 5.4.2.2
Subtract from .
Step 5.4.2.3
Add and .
Step 5.5
Simplify the determinant.
Step 5.5.1
Simplify each term.
Step 5.5.1.1
Apply the distributive property.
Step 5.5.1.2
Cancel the common factor of .
Step 5.5.1.2.1
Factor out of .
Step 5.5.1.2.2
Cancel the common factor.
Step 5.5.1.2.3
Rewrite the expression.
Step 5.5.1.3
Combine and .
Step 5.5.1.4
Simplify each term.
Step 5.5.1.4.1
Expand using the FOIL Method.
Step 5.5.1.4.1.1
Apply the distributive property.
Step 5.5.1.4.1.2
Apply the distributive property.
Step 5.5.1.4.1.3
Apply the distributive property.
Step 5.5.1.4.2
Simplify and combine like terms.
Step 5.5.1.4.2.1
Simplify each term.
Step 5.5.1.4.2.1.1
Multiply by by adding the exponents.
Step 5.5.1.4.2.1.1.1
Move .
Step 5.5.1.4.2.1.1.2
Multiply by .
Step 5.5.1.4.2.1.2
Multiply by .
Step 5.5.1.4.2.1.3
Multiply by .
Step 5.5.1.4.2.2
Subtract from .
Step 5.5.1.4.3
Apply the distributive property.
Step 5.5.1.4.4
Simplify.
Step 5.5.1.4.4.1
Multiply by .
Step 5.5.1.4.4.2
Multiply by .
Step 5.5.1.4.4.3
Multiply by .
Step 5.5.1.5
To write as a fraction with a common denominator, multiply by .
Step 5.5.1.6
Combine and .
Step 5.5.1.7
Combine the numerators over the common denominator.
Step 5.5.1.8
Simplify the numerator.
Step 5.5.1.8.1
Factor out of .
Step 5.5.1.8.1.1
Factor out of .
Step 5.5.1.8.1.2
Factor out of .
Step 5.5.1.8.1.3
Factor out of .
Step 5.5.1.8.2
Multiply by .
Step 5.5.1.8.3
Apply the distributive property.
Step 5.5.1.8.4
Multiply by .
Step 5.5.1.8.5
Multiply by .
Step 5.5.1.8.6
Expand using the FOIL Method.
Step 5.5.1.8.6.1
Apply the distributive property.
Step 5.5.1.8.6.2
Apply the distributive property.
Step 5.5.1.8.6.3
Apply the distributive property.
Step 5.5.1.8.7
Simplify and combine like terms.
Step 5.5.1.8.7.1
Simplify each term.
Step 5.5.1.8.7.1.1
Multiply by by adding the exponents.
Step 5.5.1.8.7.1.1.1
Move .
Step 5.5.1.8.7.1.1.2
Multiply by .
Step 5.5.1.8.7.1.2
Multiply by .
Step 5.5.1.8.7.1.3
Multiply by .
Step 5.5.1.8.7.2
Add and .
Step 5.5.1.8.8
Add and .
Step 5.5.1.9
To write as a fraction with a common denominator, multiply by .
Step 5.5.1.10
Combine and .
Step 5.5.1.11
Combine the numerators over the common denominator.
Step 5.5.1.12
Simplify the numerator.
Step 5.5.1.12.1
Factor out of .
Step 5.5.1.12.1.1
Factor out of .
Step 5.5.1.12.1.2
Factor out of .
Step 5.5.1.12.2
Multiply by .
Step 5.5.1.12.3
Subtract from .
Step 5.5.1.13
To write as a fraction with a common denominator, multiply by .
Step 5.5.1.14
Combine and .
Step 5.5.1.15
Combine the numerators over the common denominator.
Step 5.5.1.16
Simplify the numerator.
Step 5.5.1.16.1
Apply the distributive property.
Step 5.5.1.16.2
Simplify.
Step 5.5.1.16.2.1
Rewrite using the commutative property of multiplication.
Step 5.5.1.16.2.2
Rewrite using the commutative property of multiplication.
Step 5.5.1.16.2.3
Move to the left of .
Step 5.5.1.16.3
Simplify each term.
Step 5.5.1.16.3.1
Multiply by by adding the exponents.
Step 5.5.1.16.3.1.1
Move .
Step 5.5.1.16.3.1.2
Multiply by .
Step 5.5.1.16.3.1.2.1
Raise to the power of .
Step 5.5.1.16.3.1.2.2
Use the power rule to combine exponents.
Step 5.5.1.16.3.1.3
Add and .
Step 5.5.1.16.3.2
Multiply by by adding the exponents.
Step 5.5.1.16.3.2.1
Move .
Step 5.5.1.16.3.2.2
Multiply by .
Step 5.5.1.16.4
Multiply by .
Step 5.5.1.16.5
Rewrite in a factored form.
Step 5.5.1.16.5.1
Factor using the rational roots test.
Step 5.5.1.16.5.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 5.5.1.16.5.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 5.5.1.16.5.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 5.5.1.16.5.1.3.1
Substitute into the polynomial.
Step 5.5.1.16.5.1.3.2
Raise to the power of .
Step 5.5.1.16.5.1.3.3
Multiply by .
Step 5.5.1.16.5.1.3.4
Raise to the power of .
Step 5.5.1.16.5.1.3.5
Multiply by .
Step 5.5.1.16.5.1.3.6
Add and .
Step 5.5.1.16.5.1.3.7
Multiply by .
Step 5.5.1.16.5.1.3.8
Subtract from .
Step 5.5.1.16.5.1.3.9
Subtract from .
Step 5.5.1.16.5.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 5.5.1.16.5.1.5
Divide by .
Step 5.5.1.16.5.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | - | + | + | - |
Step 5.5.1.16.5.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||
+ | - | + | + | - |
Step 5.5.1.16.5.1.5.3
Multiply the new quotient term by the divisor.
- | |||||||||||
+ | - | + | + | - | |||||||
- | - |
Step 5.5.1.16.5.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||
+ | - | + | + | - | |||||||
+ | + |
Step 5.5.1.16.5.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ |
Step 5.5.1.16.5.1.5.6
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ | + |
Step 5.5.1.16.5.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ | + |
Step 5.5.1.16.5.1.5.8
Multiply the new quotient term by the divisor.
- | + | ||||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ | + | ||||||||||
+ | + |
Step 5.5.1.16.5.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - |
Step 5.5.1.16.5.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- |
Step 5.5.1.16.5.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | + | ||||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - |
Step 5.5.1.16.5.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | - | |||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - |
Step 5.5.1.16.5.1.5.13
Multiply the new quotient term by the divisor.
- | + | - | |||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
- | - |
Step 5.5.1.16.5.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | - | |||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + |
Step 5.5.1.16.5.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | - | |||||||||
+ | - | + | + | - | |||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
Step 5.5.1.16.5.1.5.16
Since the remander is , the final answer is the quotient.
Step 5.5.1.16.5.1.6
Write as a set of factors.
Step 5.5.1.16.5.2
Factor by grouping.
Step 5.5.1.16.5.2.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 5.5.1.16.5.2.1.1
Factor out of .
Step 5.5.1.16.5.2.1.2
Rewrite as plus
Step 5.5.1.16.5.2.1.3
Apply the distributive property.
Step 5.5.1.16.5.2.2
Factor out the greatest common factor from each group.
Step 5.5.1.16.5.2.2.1
Group the first two terms and the last two terms.
Step 5.5.1.16.5.2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 5.5.1.16.5.2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 5.5.1.17
Apply the distributive property.
Step 5.5.1.18
Multiply by .
Step 5.5.1.19
Multiply by .
Step 5.5.1.20
Multiply by .
Step 5.5.2
To write as a fraction with a common denominator, multiply by .
Step 5.5.3
Combine and .
Step 5.5.4
Combine the numerators over the common denominator.
Step 5.5.5
Simplify the numerator.
Step 5.5.5.1
Expand using the FOIL Method.
Step 5.5.5.1.1
Apply the distributive property.
Step 5.5.5.1.2
Apply the distributive property.
Step 5.5.5.1.3
Apply the distributive property.
Step 5.5.5.2
Simplify and combine like terms.
Step 5.5.5.2.1
Simplify each term.
Step 5.5.5.2.1.1
Rewrite using the commutative property of multiplication.
Step 5.5.5.2.1.2
Multiply by by adding the exponents.
Step 5.5.5.2.1.2.1
Move .
Step 5.5.5.2.1.2.2
Multiply by .
Step 5.5.5.2.1.3
Move to the left of .
Step 5.5.5.2.1.4
Multiply by .
Step 5.5.5.2.1.5
Multiply by .
Step 5.5.5.2.2
Subtract from .
Step 5.5.5.3
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.5.5.4
Simplify each term.
Step 5.5.5.4.1
Multiply by by adding the exponents.
Step 5.5.5.4.1.1
Move .
Step 5.5.5.4.1.2
Multiply by .
Step 5.5.5.4.1.2.1
Raise to the power of .
Step 5.5.5.4.1.2.2
Use the power rule to combine exponents.
Step 5.5.5.4.1.3
Add and .
Step 5.5.5.4.2
Multiply by .
Step 5.5.5.4.3
Multiply by by adding the exponents.
Step 5.5.5.4.3.1
Move .
Step 5.5.5.4.3.2
Multiply by .
Step 5.5.5.4.4
Multiply by .
Step 5.5.5.4.5
Multiply by .
Step 5.5.5.5
Subtract from .
Step 5.5.5.6
Add and .
Step 5.5.5.7
Multiply by .
Step 5.5.5.8
Subtract from .
Step 5.5.6
To write as a fraction with a common denominator, multiply by .
Step 5.5.7
Combine and .
Step 5.5.8
Combine the numerators over the common denominator.
Step 5.5.9
Multiply by .
Step 5.5.10
Add and .
Step 5.5.11
Add and .
Step 5.5.12
Factor out of .
Step 5.5.12.1
Factor out of .
Step 5.5.12.2
Factor out of .
Step 5.5.12.3
Factor out of .
Step 5.5.12.4
Factor out of .
Step 5.5.12.5
Factor out of .
Step 5.5.13
To write as a fraction with a common denominator, multiply by .
Step 5.5.14
Combine and .
Step 5.5.15
Combine the numerators over the common denominator.
Step 5.5.16
Simplify the numerator.
Step 5.5.16.1
Factor out of .
Step 5.5.16.1.1
Factor out of .
Step 5.5.16.1.2
Factor out of .
Step 5.5.16.2
Multiply by .
Step 5.5.16.3
Add and .
Step 5.5.17
Factor out of .
Step 5.5.18
Factor out of .
Step 5.5.19
Factor out of .
Step 5.5.20
Rewrite as .
Step 5.5.21
Factor out of .
Step 5.5.22
Rewrite as .
Step 5.5.23
Move the negative in front of the fraction.
Step 6
Set the characteristic polynomial equal to to find the eigenvalues .
Step 7
Step 7.1
Set the numerator equal to zero.
Step 7.2
Solve the equation for .
Step 7.2.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 7.2.2
Set equal to .
Step 7.2.3
Set equal to and solve for .
Step 7.2.3.1
Set equal to .
Step 7.2.3.2
Solve for .
Step 7.2.3.2.1
Use the quadratic formula to find the solutions.
Step 7.2.3.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 7.2.3.2.3
Simplify.
Step 7.2.3.2.3.1
Simplify the numerator.
Step 7.2.3.2.3.1.1
Raise to the power of .
Step 7.2.3.2.3.1.2
Multiply .
Step 7.2.3.2.3.1.2.1
Multiply by .
Step 7.2.3.2.3.1.2.2
Multiply by .
Step 7.2.3.2.3.1.3
Add and .
Step 7.2.3.2.3.1.4
Rewrite as .
Step 7.2.3.2.3.1.4.1
Factor out of .
Step 7.2.3.2.3.1.4.2
Rewrite as .
Step 7.2.3.2.3.1.5
Pull terms out from under the radical.
Step 7.2.3.2.3.2
Multiply by .
Step 7.2.3.2.3.3
Simplify .
Step 7.2.3.2.4
The final answer is the combination of both solutions.
Step 7.2.4
The final solution is all the values that make true.
Step 8
The result can be shown in multiple forms.
Exact Form:
Decimal Form: