Enter a problem...
Linear Algebra Examples
Step 1
Set up the formula to find the characteristic equation .
Step 2
The identity matrix or unit matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere.
Step 3
Step 3.1
Substitute for .
Step 3.2
Substitute for .
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply by each element of the matrix.
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply by .
Step 4.1.2.2
Multiply .
Step 4.1.2.2.1
Multiply by .
Step 4.1.2.2.2
Multiply by .
Step 4.1.2.3
Multiply .
Step 4.1.2.3.1
Multiply by .
Step 4.1.2.3.2
Multiply by .
Step 4.1.2.4
Multiply by .
Step 4.2
Add the corresponding elements.
Step 4.3
Simplify each element.
Step 4.3.1
Subtract from .
Step 4.3.2
Add and .
Step 4.3.3
Add and .
Step 5
Step 5.1
The determinant of a matrix can be found using the formula .
Step 5.2
Simplify the determinant.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Apply the distributive property.
Step 5.2.1.2
Rewrite using the commutative property of multiplication.
Step 5.2.1.3
Simplify each term.
Step 5.2.1.3.1
Multiply by by adding the exponents.
Step 5.2.1.3.1.1
Move .
Step 5.2.1.3.1.2
Multiply by .
Step 5.2.1.3.2
Multiply by .
Step 5.2.1.3.3
Multiply by .
Step 5.2.1.4
Multiply .
Step 5.2.1.4.1
Multiply by .
Step 5.2.1.4.2
Multiply by .
Step 5.2.2
Reorder and .
Step 6
Set the characteristic polynomial equal to to find the eigenvalues .
Step 7
Step 7.1
Use the quadratic formula to find the solutions.
Step 7.2
Substitute the values , , and into the quadratic formula and solve for .
Step 7.3
Simplify.
Step 7.3.1
Simplify the numerator.
Step 7.3.1.1
Apply the product rule to .
Step 7.3.1.2
Raise to the power of .
Step 7.3.1.3
Multiply by .
Step 7.3.1.4
Rewrite as .
Step 7.3.1.4.1
Use to rewrite as .
Step 7.3.1.4.2
Apply the power rule and multiply exponents, .
Step 7.3.1.4.3
Combine and .
Step 7.3.1.4.4
Cancel the common factor of .
Step 7.3.1.4.4.1
Cancel the common factor.
Step 7.3.1.4.4.2
Rewrite the expression.
Step 7.3.1.4.5
Evaluate the exponent.
Step 7.3.1.5
Multiply .
Step 7.3.1.5.1
Multiply by .
Step 7.3.1.5.2
Multiply by .
Step 7.3.1.6
Subtract from .
Step 7.3.1.7
Rewrite as .
Step 7.3.1.8
Rewrite as .
Step 7.3.1.9
Rewrite as .
Step 7.3.2
Multiply by .
Step 7.4
The final answer is the combination of both solutions.