Linear Algebra Examples

Find the Eigenvalues [[0,1],[-1, square root of 2]]
[01-12][0112]
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2)
Step 2
The identity matrix or unit matrix of size 22 is the 2×22×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001][1001]
Step 3
Substitute the known values into p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2).
Tap for more steps...
Step 3.1
Substitute [01-12][0112] for AA.
p(λ)=determinant([01-12]-λI2)p(λ)=determinant([0112]λI2)
Step 3.2
Substitute [1001][1001] for I2I2.
p(λ)=determinant([01-12]-λ[1001])p(λ)=determinant([0112]λ[1001])
p(λ)=determinant([01-12]-λ[1001])p(λ)=determinant([0112]λ[1001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λλ by each element of the matrix.
p(λ)=determinant([01-12]+[-λ1-λ0-λ0-λ1])p(λ)=determinant([0112]+[λ1λ0λ0λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -11 by 11.
p(λ)=determinant([01-12]+[-λ-λ0-λ0-λ1])p(λ)=determinant([0112]+[λλ0λ0λ1])
Step 4.1.2.2
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 00 by -11.
p(λ)=determinant([01-12]+[-λ0λ-λ0-λ1])p(λ)=determinant([0112]+[λ0λλ0λ1])
Step 4.1.2.2.2
Multiply 00 by λλ.
p(λ)=determinant([01-12]+[-λ0-λ0-λ1])p(λ)=determinant([0112]+[λ0λ0λ1])
p(λ)=determinant([01-12]+[-λ0-λ0-λ1])p(λ)=determinant([0112]+[λ0λ0λ1])
Step 4.1.2.3
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 00 by -11.
p(λ)=determinant([01-12]+[-λ00λ-λ1])p(λ)=determinant([0112]+[λ00λλ1])
Step 4.1.2.3.2
Multiply 00 by λλ.
p(λ)=determinant([01-12]+[-λ00-λ1])p(λ)=determinant([0112]+[λ00λ1])
p(λ)=determinant([01-12]+[-λ00-λ1])p(λ)=determinant([0112]+[λ00λ1])
Step 4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([01-12]+[-λ00-λ])
p(λ)=determinant([01-12]+[-λ00-λ])
p(λ)=determinant([01-12]+[-λ00-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[0-λ1+0-1+02-λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Subtract λ from 0.
p(λ)=determinant[-λ1+0-1+02-λ]
Step 4.3.2
Add 1 and 0.
p(λ)=determinant[-λ1-1+02-λ]
Step 4.3.3
Add -1 and 0.
p(λ)=determinant[-λ1-12-λ]
p(λ)=determinant[-λ1-12-λ]
p(λ)=determinant[-λ1-12-λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=-λ(2-λ)-(-11)
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Apply the distributive property.
p(λ)=-λ2-λ(-λ)-(-11)
Step 5.2.1.2
Rewrite using the commutative property of multiplication.
p(λ)=-λ2-1-1λλ-(-11)
Step 5.2.1.3
Simplify each term.
Tap for more steps...
Step 5.2.1.3.1
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.2.1.3.1.1
Move λ.
p(λ)=-λ2-1-1(λλ)-(-11)
Step 5.2.1.3.1.2
Multiply λ by λ.
p(λ)=-λ2-1-1λ2-(-11)
p(λ)=-λ2-1-1λ2-(-11)
Step 5.2.1.3.2
Multiply -1 by -1.
p(λ)=-λ2+1λ2-(-11)
Step 5.2.1.3.3
Multiply λ2 by 1.
p(λ)=-λ2+λ2-(-11)
p(λ)=-λ2+λ2-(-11)
Step 5.2.1.4
Multiply -(-11).
Tap for more steps...
Step 5.2.1.4.1
Multiply -1 by 1.
p(λ)=-λ2+λ2--1
Step 5.2.1.4.2
Multiply -1 by -1.
p(λ)=-λ2+λ2+1
p(λ)=-λ2+λ2+1
p(λ)=-λ2+λ2+1
Step 5.2.2
Reorder -λ2 and λ2.
p(λ)=λ2-λ2+1
p(λ)=λ2-λ2+1
p(λ)=λ2-λ2+1
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ2-λ2+1=0
Step 7
Solve for λ.
Tap for more steps...
Step 7.1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 7.2
Substitute the values a=1, b=-2, and c=1 into the quadratic formula and solve for λ.
2±(-2)2-4(11)21
Step 7.3
Simplify.
Tap for more steps...
Step 7.3.1
Simplify the numerator.
Tap for more steps...
Step 7.3.1.1
Apply the product rule to -2.
λ=2±(-1)222-41121
Step 7.3.1.2
Raise -1 to the power of 2.
λ=2±122-41121
Step 7.3.1.3
Multiply 22 by 1.
λ=2±22-41121
Step 7.3.1.4
Rewrite 22 as 2.
Tap for more steps...
Step 7.3.1.4.1
Use nax=axn to rewrite 2 as 212.
λ=2±(212)2-41121
Step 7.3.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
λ=2±2122-41121
Step 7.3.1.4.3
Combine 12 and 2.
λ=2±222-41121
Step 7.3.1.4.4
Cancel the common factor of 2.
Tap for more steps...
Step 7.3.1.4.4.1
Cancel the common factor.
λ=2±222-41121
Step 7.3.1.4.4.2
Rewrite the expression.
λ=2±2-41121
λ=2±2-41121
Step 7.3.1.4.5
Evaluate the exponent.
λ=2±2-41121
λ=2±2-41121
Step 7.3.1.5
Multiply -411.
Tap for more steps...
Step 7.3.1.5.1
Multiply -4 by 1.
λ=2±2-4121
Step 7.3.1.5.2
Multiply -4 by 1.
λ=2±2-421
λ=2±2-421
Step 7.3.1.6
Subtract 4 from 2.
λ=2±-221
Step 7.3.1.7
Rewrite -2 as -1(2).
λ=2±-1221
Step 7.3.1.8
Rewrite -1(2) as -12.
λ=2±-1221
Step 7.3.1.9
Rewrite -1 as i.
λ=2±i221
λ=2±i221
Step 7.3.2
Multiply 2 by 1.
λ=2±i22
λ=2±i22
Step 7.4
The final answer is the combination of both solutions.
λ=2+i22,2-i22
λ=2+i22,2-i22
 [x2  12  π  xdx ]