Linear Algebra Examples

Find the Eigenvalues [[1,3],[2,-1]]
[132-1]
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI2)
Step 2
The identity matrix or unit matrix of size 2 is the 2×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001]
Step 3
Substitute the known values into p(λ)=determinant(A-λI2).
Tap for more steps...
Step 3.1
Substitute [132-1] for A.
p(λ)=determinant([132-1]-λI2)
Step 3.2
Substitute [1001] for I2.
p(λ)=determinant([132-1]-λ[1001])
p(λ)=determinant([132-1]-λ[1001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([132-1]+[-λ1-λ0-λ0-λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([132-1]+[-λ-λ0-λ0-λ1])
Step 4.1.2.2
Multiply -λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([132-1]+[-λ0λ-λ0-λ1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([132-1]+[-λ0-λ0-λ1])
p(λ)=determinant([132-1]+[-λ0-λ0-λ1])
Step 4.1.2.3
Multiply -λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([132-1]+[-λ00λ-λ1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([132-1]+[-λ00-λ1])
p(λ)=determinant([132-1]+[-λ00-λ1])
Step 4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([132-1]+[-λ00-λ])
p(λ)=determinant([132-1]+[-λ00-λ])
p(λ)=determinant([132-1]+[-λ00-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[1-λ3+02+0-1-λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 3 and 0.
p(λ)=determinant[1-λ32+0-1-λ]
Step 4.3.2
Add 2 and 0.
p(λ)=determinant[1-λ32-1-λ]
p(λ)=determinant[1-λ32-1-λ]
p(λ)=determinant[1-λ32-1-λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(1-λ)(-1-λ)-23
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Expand (1-λ)(-1-λ) using the FOIL Method.
Tap for more steps...
Step 5.2.1.1.1
Apply the distributive property.
p(λ)=1(-1-λ)-λ(-1-λ)-23
Step 5.2.1.1.2
Apply the distributive property.
p(λ)=1-1+1(-λ)-λ(-1-λ)-23
Step 5.2.1.1.3
Apply the distributive property.
p(λ)=1-1+1(-λ)-λ-1-λ(-λ)-23
p(λ)=1-1+1(-λ)-λ-1-λ(-λ)-23
Step 5.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.2.1.1
Multiply -1 by 1.
p(λ)=-1+1(-λ)-λ-1-λ(-λ)-23
Step 5.2.1.2.1.2
Multiply -λ by 1.
p(λ)=-1-λ-λ-1-λ(-λ)-23
Step 5.2.1.2.1.3
Multiply -λ-1.
Tap for more steps...
Step 5.2.1.2.1.3.1
Multiply -1 by -1.
p(λ)=-1-λ+1λ-λ(-λ)-23
Step 5.2.1.2.1.3.2
Multiply λ by 1.
p(λ)=-1-λ+λ-λ(-λ)-23
p(λ)=-1-λ+λ-λ(-λ)-23
Step 5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=-1-λ+λ-1-1λλ-23
Step 5.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.2.1.2.1.5.1
Move λ.
p(λ)=-1-λ+λ-1-1(λλ)-23
Step 5.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=-1-λ+λ-1-1λ2-23
p(λ)=-1-λ+λ-1-1λ2-23
Step 5.2.1.2.1.6
Multiply -1 by -1.
p(λ)=-1-λ+λ+1λ2-23
Step 5.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=-1-λ+λ+λ2-23
p(λ)=-1-λ+λ+λ2-23
Step 5.2.1.2.2
Add -λ and λ.
p(λ)=-1+0+λ2-23
Step 5.2.1.2.3
Add -1 and 0.
p(λ)=-1+λ2-23
p(λ)=-1+λ2-23
Step 5.2.1.3
Multiply -2 by 3.
p(λ)=-1+λ2-6
p(λ)=-1+λ2-6
Step 5.2.2
Subtract 6 from -1.
p(λ)=λ2-7
p(λ)=λ2-7
p(λ)=λ2-7
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ2-7=0
Step 7
Solve for λ.
Tap for more steps...
Step 7.1
Add 7 to both sides of the equation.
λ2=7
Step 7.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
λ=±7
Step 7.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 7.3.1
First, use the positive value of the ± to find the first solution.
λ=7
Step 7.3.2
Next, use the negative value of the ± to find the second solution.
λ=-7
Step 7.3.3
The complete solution is the result of both the positive and negative portions of the solution.
λ=7,-7
λ=7,-7
λ=7,-7
Step 8
The result can be shown in multiple forms.
Exact Form:
λ=7,-7
Decimal Form:
λ=2.64575131,-2.64575131
 [x2  12  π  xdx ]