Enter a problem...
Linear Algebra Examples
[1+i1-i1]
Step 1
The norm is the square root of the sum of squares of each element in the vector.
√|1+i|2+|1-i|2+12
Step 2
Step 2.1
Use the formula |a+bi|=√a2+b2 to find the magnitude.
√√12+122+|1-i|2+12
Step 2.2
One to any power is one.
√√1+122+|1-i|2+12
Step 2.3
One to any power is one.
√√1+12+|1-i|2+12
Step 2.4
Add 1 and 1.
√√22+|1-i|2+12
Step 2.5
Rewrite √22 as 2.
Step 2.5.1
Use n√ax=axn to rewrite √2 as 212.
√(212)2+|1-i|2+12
Step 2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
√212⋅2+|1-i|2+12
Step 2.5.3
Combine 12 and 2.
√222+|1-i|2+12
Step 2.5.4
Cancel the common factor of 2.
Step 2.5.4.1
Cancel the common factor.
√222+|1-i|2+12
Step 2.5.4.2
Rewrite the expression.
√21+|1-i|2+12
√21+|1-i|2+12
Step 2.5.5
Evaluate the exponent.
√2+|1-i|2+12
√2+|1-i|2+12
Step 2.6
Use the formula |a+bi|=√a2+b2 to find the magnitude.
√2+√12+(-1)22+12
Step 2.7
One to any power is one.
√2+√1+(-1)22+12
Step 2.8
Raise -1 to the power of 2.
√2+√1+12+12
Step 2.9
Add 1 and 1.
√2+√22+12
Step 2.10
Rewrite √22 as 2.
Step 2.10.1
Use n√ax=axn to rewrite √2 as 212.
√2+(212)2+12
Step 2.10.2
Apply the power rule and multiply exponents, (am)n=amn.
√2+212⋅2+12
Step 2.10.3
Combine 12 and 2.
√2+222+12
Step 2.10.4
Cancel the common factor of 2.
Step 2.10.4.1
Cancel the common factor.
√2+222+12
Step 2.10.4.2
Rewrite the expression.
√2+21+12
√2+21+12
Step 2.10.5
Evaluate the exponent.
√2+2+12
√2+2+12
Step 2.11
One to any power is one.
√2+2+1
Step 2.12
Add 2 and 2.
√4+1
Step 2.13
Add 4 and 1.
√5
√5
Step 3
The result can be shown in multiple forms.
Exact Form:
√5
Decimal Form:
2.23606797…