Linear Algebra Examples

Find the Norm [[1+i],[1-i],[1]]
[1+i1-i1]
Step 1
The norm is the square root of the sum of squares of each element in the vector.
|1+i|2+|1-i|2+12
Step 2
Simplify.
Tap for more steps...
Step 2.1
Use the formula |a+bi|=a2+b2 to find the magnitude.
12+122+|1-i|2+12
Step 2.2
One to any power is one.
1+122+|1-i|2+12
Step 2.3
One to any power is one.
1+12+|1-i|2+12
Step 2.4
Add 1 and 1.
22+|1-i|2+12
Step 2.5
Rewrite 22 as 2.
Tap for more steps...
Step 2.5.1
Use nax=axn to rewrite 2 as 212.
(212)2+|1-i|2+12
Step 2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
2122+|1-i|2+12
Step 2.5.3
Combine 12 and 2.
222+|1-i|2+12
Step 2.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.5.4.1
Cancel the common factor.
222+|1-i|2+12
Step 2.5.4.2
Rewrite the expression.
21+|1-i|2+12
21+|1-i|2+12
Step 2.5.5
Evaluate the exponent.
2+|1-i|2+12
2+|1-i|2+12
Step 2.6
Use the formula |a+bi|=a2+b2 to find the magnitude.
2+12+(-1)22+12
Step 2.7
One to any power is one.
2+1+(-1)22+12
Step 2.8
Raise -1 to the power of 2.
2+1+12+12
Step 2.9
Add 1 and 1.
2+22+12
Step 2.10
Rewrite 22 as 2.
Tap for more steps...
Step 2.10.1
Use nax=axn to rewrite 2 as 212.
2+(212)2+12
Step 2.10.2
Apply the power rule and multiply exponents, (am)n=amn.
2+2122+12
Step 2.10.3
Combine 12 and 2.
2+222+12
Step 2.10.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.10.4.1
Cancel the common factor.
2+222+12
Step 2.10.4.2
Rewrite the expression.
2+21+12
2+21+12
Step 2.10.5
Evaluate the exponent.
2+2+12
2+2+12
Step 2.11
One to any power is one.
2+2+1
Step 2.12
Add 2 and 2.
4+1
Step 2.13
Add 4 and 1.
5
5
Step 3
The result can be shown in multiple forms.
Exact Form:
5
Decimal Form:
2.23606797
 [x2  12  π  xdx ]