Enter a problem...
Linear Algebra Examples
√5+i√5√5+i√5
Step 1
This is the trigonometric form of a complex number where |z| is the modulus and θ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=√a2+b2 where z=a+bi
Step 3
Substitute the actual values of a=√5 and b=√5.
|z|=√(√5)2+(√5)2
Step 4
Step 4.1
Rewrite √52 as 5.
Step 4.1.1
Use n√ax=axn to rewrite √5 as 512.
|z|=√(512)2+(√5)2
Step 4.1.2
Apply the power rule and multiply exponents, (am)n=amn.
|z|=√512⋅2+(√5)2
Step 4.1.3
Combine 12 and 2.
|z|=√522+(√5)2
Step 4.1.4
Cancel the common factor of 2.
Step 4.1.4.1
Cancel the common factor.
|z|=√522+(√5)2
Step 4.1.4.2
Rewrite the expression.
|z|=√5+(√5)2
|z|=√5+(√5)2
Step 4.1.5
Evaluate the exponent.
|z|=√5+(√5)2
|z|=√5+(√5)2
Step 4.2
Rewrite √52 as 5.
Step 4.2.1
Use n√ax=axn to rewrite √5 as 512.
|z|=√5+(512)2
Step 4.2.2
Apply the power rule and multiply exponents, (am)n=amn.
|z|=√5+512⋅2
Step 4.2.3
Combine 12 and 2.
|z|=√5+522
Step 4.2.4
Cancel the common factor of 2.
Step 4.2.4.1
Cancel the common factor.
|z|=√5+522
Step 4.2.4.2
Rewrite the expression.
|z|=√5+5
|z|=√5+5
Step 4.2.5
Evaluate the exponent.
|z|=√5+5
|z|=√5+5
Step 4.3
Add 5 and 5.
|z|=√10
|z|=√10
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(√5√5)
Step 6
Since inverse tangent of √5√5 produces an angle in the first quadrant, the value of the angle is π4.
θ=π4
Step 7
Substitute the values of θ=π4 and |z|=√10.
√10(cos(π4)+isin(π4))