Linear Algebra Examples

Convert to Trigonometric Form square root of 5+i square root of 5
5+i55+i5
Step 1
This is the trigonometric form of a complex number where |z| is the modulus and θ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2 where z=a+bi
Step 3
Substitute the actual values of a=5 and b=5.
|z|=(5)2+(5)2
Step 4
Find |z|.
Tap for more steps...
Step 4.1
Rewrite 52 as 5.
Tap for more steps...
Step 4.1.1
Use nax=axn to rewrite 5 as 512.
|z|=(512)2+(5)2
Step 4.1.2
Apply the power rule and multiply exponents, (am)n=amn.
|z|=5122+(5)2
Step 4.1.3
Combine 12 and 2.
|z|=522+(5)2
Step 4.1.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.1.4.1
Cancel the common factor.
|z|=522+(5)2
Step 4.1.4.2
Rewrite the expression.
|z|=5+(5)2
|z|=5+(5)2
Step 4.1.5
Evaluate the exponent.
|z|=5+(5)2
|z|=5+(5)2
Step 4.2
Rewrite 52 as 5.
Tap for more steps...
Step 4.2.1
Use nax=axn to rewrite 5 as 512.
|z|=5+(512)2
Step 4.2.2
Apply the power rule and multiply exponents, (am)n=amn.
|z|=5+5122
Step 4.2.3
Combine 12 and 2.
|z|=5+522
Step 4.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.4.1
Cancel the common factor.
|z|=5+522
Step 4.2.4.2
Rewrite the expression.
|z|=5+5
|z|=5+5
Step 4.2.5
Evaluate the exponent.
|z|=5+5
|z|=5+5
Step 4.3
Add 5 and 5.
|z|=10
|z|=10
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(55)
Step 6
Since inverse tangent of 55 produces an angle in the first quadrant, the value of the angle is π4.
θ=π4
Step 7
Substitute the values of θ=π4 and |z|=10.
10(cos(π4)+isin(π4))
 [x2  12  π  xdx ]