Linear Algebra Examples

Convert to Trigonometric Form square root of 2+ square root of 2i
2+2i
Step 1
This is the trigonometric form of a complex number where |z| is the modulus and θ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2 where z=a+bi
Step 3
Substitute the actual values of a=2 and b=2.
|z|=(2)2+(2)2
Step 4
Find |z|.
Tap for more steps...
Step 4.1
Rewrite 22 as 2.
Tap for more steps...
Step 4.1.1
Use axn=axn to rewrite 2 as 212.
|z|=(212)2+(2)2
Step 4.1.2
Apply the power rule and multiply exponents, (am)n=amn.
|z|=2122+(2)2
Step 4.1.3
Combine 12 and 2.
|z|=222+(2)2
Step 4.1.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.1.4.1
Cancel the common factor.
|z|=222+(2)2
Step 4.1.4.2
Rewrite the expression.
|z|=2+(2)2
|z|=2+(2)2
Step 4.1.5
Evaluate the exponent.
|z|=2+(2)2
|z|=2+(2)2
Step 4.2
Rewrite 22 as 2.
Tap for more steps...
Step 4.2.1
Use axn=axn to rewrite 2 as 212.
|z|=2+(212)2
Step 4.2.2
Apply the power rule and multiply exponents, (am)n=amn.
|z|=2+2122
Step 4.2.3
Combine 12 and 2.
|z|=2+222
Step 4.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.4.1
Cancel the common factor.
|z|=2+222
Step 4.2.4.2
Rewrite the expression.
|z|=2+2
|z|=2+2
Step 4.2.5
Evaluate the exponent.
|z|=2+2
|z|=2+2
Step 4.3
Simplify the expression.
Tap for more steps...
Step 4.3.1
Add 2 and 2.
|z|=4
Step 4.3.2
Rewrite 4 as 22.
|z|=22
|z|=22
Step 4.4
Pull terms out from under the radical, assuming positive real numbers.
|z|=2
|z|=2
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(22)
Step 6
Since inverse tangent of 22 produces an angle in the first quadrant, the value of the angle is π4.
θ=π4
Step 7
Substitute the values of θ=π4 and |z|=2.
2(cos(π4)+isin(π4))
 [x2  12  π  xdx ]