Linear Algebra Examples

Convert to Trigonometric Form |-7-9i|
|-7-9i|
Step 1
Use the formula |a+bi|=a2+b2 to find the magnitude.
(-7)2+(-9)2
Step 2
Raise -7 to the power of 2.
49+(-9)2
Step 3
Raise -9 to the power of 2.
49+81
Step 4
Add 49 and 81.
130
Step 5
This is the trigonometric form of a complex number where |z| is the modulus and θ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))
Step 6
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2 where z=a+bi
Step 7
Substitute the actual values of a=130 and b=0.
|z|=02+(130)2
Step 8
Find |z|.
Tap for more steps...
Step 8.1
Raising 0 to any positive power yields 0.
|z|=0+(130)2
Step 8.2
Rewrite 1302 as 130.
Tap for more steps...
Step 8.2.1
Use axn=axn to rewrite 130 as 13012.
|z|=0+(13012)2
Step 8.2.2
Apply the power rule and multiply exponents, (am)n=amn.
|z|=0+130122
Step 8.2.3
Combine 12 and 2.
|z|=0+13022
Step 8.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.2.4.1
Cancel the common factor.
|z|=0+13022
Step 8.2.4.2
Rewrite the expression.
|z|=0+130
|z|=0+130
Step 8.2.5
Evaluate the exponent.
|z|=0+130
|z|=0+130
Step 8.3
Add 0 and 130.
|z|=130
|z|=130
Step 9
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(0130)
Step 10
Since inverse tangent of 0130 produces an angle in the first quadrant, the value of the angle is 0.
θ=0
Step 11
Substitute the values of θ=0 and |z|=130.
130(cos(0)+isin(0))
 [x2  12  π  xdx ]