Linear Algebra Examples

Convert to Trigonometric Form 3-5i
3-5i
Step 1
This is the trigonometric form of a complex number where |z| is the modulus and θ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2 where z=a+bi
Step 3
Substitute the actual values of a=3 and b=-5.
|z|=(-5)2+32
Step 4
Find |z|.
Tap for more steps...
Step 4.1
Raise -5 to the power of 2.
|z|=25+32
Step 4.2
Raise 3 to the power of 2.
|z|=25+9
Step 4.3
Add 25 and 9.
|z|=34
|z|=34
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(-53)
Step 6
Since inverse tangent of -53 produces an angle in the fourth quadrant, the value of the angle is -1.03037682.
θ=-1.03037682
Step 7
Substitute the values of θ=-1.03037682 and |z|=34.
34(cos(-1.03037682)+isin(-1.03037682))
 [x2  12  π  xdx ]