Linear Algebra Examples

Evaluate (18+ square root of -324)/(2+ square root of -4)
18+-3242+-418+3242+4
Step 1
Pull out imaginary unit ii.
Tap for more steps...
Step 1.1
Rewrite -324324 as -1(324)1(324).
18+-1(324)2+-418+1(324)2+4
Step 1.2
Rewrite -1(324)1(324) as -13241324.
18+-13242+-418+13242+4
Step 1.3
Rewrite -11 as ii.
18+i3242+-418+i3242+4
Step 1.4
Rewrite -44 as -1(4)1(4).
18+i3242+-1(4)18+i3242+1(4)
Step 1.5
Rewrite -1(4)1(4) as -1414.
18+i3242+-1418+i3242+14
Step 1.6
Rewrite -11 as ii.
18+i3242+i418+i3242+i4
18+i3242+i418+i3242+i4
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Rewrite 324324 as 182182.
18+i1822+i418+i1822+i4
Step 2.2
Pull terms out from under the radical, assuming positive real numbers.
18+i182+i418+i182+i4
Step 2.3
Move 1818 to the left of ii.
18+18i2+i418+18i2+i4
18+18i2+i418+18i2+i4
Step 3
Simplify the denominator.
Tap for more steps...
Step 3.1
Rewrite 44 as 2222.
18+18i2+i2218+18i2+i22
Step 3.2
Pull terms out from under the radical, assuming positive real numbers.
18+18i2+i218+18i2+i2
Step 3.3
Move 22 to the left of ii.
18+18i2+2i18+18i2+2i
18+18i2+2i18+18i2+2i
Step 4
Cancel the common factor of 18+18i18+18i and 2+2i2+2i.
Tap for more steps...
Step 4.1
Factor 22 out of 1818.
29+18i2+2i29+18i2+2i
Step 4.2
Factor 22 out of 18i18i.
29+2(9i)2+2i29+2(9i)2+2i
Step 4.3
Factor 22 out of 2(9)+2(9i)2(9)+2(9i).
2(9+9i)2+2i2(9+9i)2+2i
Step 4.4
Cancel the common factors.
Tap for more steps...
Step 4.4.1
Factor 22 out of 22.
2(9+9i)2(1)+2i2(9+9i)2(1)+2i
Step 4.4.2
Factor 22 out of 2i2i.
2(9+9i)2(1)+2(i)2(9+9i)2(1)+2(i)
Step 4.4.3
Factor 22 out of 2(1)+2(i)2(1)+2(i).
2(9+9i)2(1+i)2(9+9i)2(1+i)
Step 4.4.4
Cancel the common factor.
2(9+9i)2(1+i)
Step 4.4.5
Rewrite the expression.
9+9i1+i
9+9i1+i
9+9i1+i
 [x2  12  π  xdx ]