Linear Algebra Examples

Find the Determinant of the Resulting Matrix [[i+2,5i+5,-3i-2],[-1,-i-3,i+1],[0,-1,1]]*[[13+i],[-4-i],[-5]]
[i+25i+5-3i-2-1-i-3i+10-11][13+i-4-i-5]i+25i+53i21i3i+101113+i4i5
Step 1
Multiply each row in the first matrix by each column in the second matrix.
[(i+2)(13+i)+(5i+5)(-4-i)+(-3i-2)-5-(13+i)+(-i-3)(-4-i)+(i+1)-50(13+i)-(-4-i)+1-5](i+2)(13+i)+(5i+5)(4i)+(3i2)5(13+i)+(i3)(4i)+(i+1)50(13+i)(4i)+15
Step 2
Simplify each element of the matrix by multiplying out all the expressions.
[20+5i-7+i-1+i]20+5i7+i1+i
 [x2  12  π  xdx ]  x2  12  π  xdx