Linear Algebra Examples

Find the Domain an=14+(n-1)(-3)
an=14+(n-1)(-3)
Step 1
Divide each term in an=14+(n-1)-3 by n and simplify.
Tap for more steps...
Step 1.1
Divide each term in an=14+(n-1)-3 by n.
ann=14n+(n-1)-3n
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Cancel the common factor of n.
Tap for more steps...
Step 1.2.1.1
Cancel the common factor.
ann=14n+(n-1)-3n
Step 1.2.1.2
Divide a by 1.
a=14n+(n-1)-3n
a=14n+(n-1)-3n
a=14n+(n-1)-3n
Step 1.3
Simplify the right side.
Tap for more steps...
Step 1.3.1
Combine the numerators over the common denominator.
a=14+(n-1)-3n
Step 1.3.2
Simplify each term.
Tap for more steps...
Step 1.3.2.1
Apply the distributive property.
a=14+n-3-1-3n
Step 1.3.2.2
Move -3 to the left of n.
a=14-3n-1-3n
Step 1.3.2.3
Multiply -1 by -3.
a=14-3n+3n
a=14-3n+3n
Step 1.3.3
Simplify with factoring out.
Tap for more steps...
Step 1.3.3.1
Add 14 and 3.
a=-3n+17n
Step 1.3.3.2
Factor -1 out of -3n.
a=-(3n)+17n
Step 1.3.3.3
Rewrite 17 as -1(-17).
a=-(3n)-1(-17)n
Step 1.3.3.4
Factor -1 out of -(3n)-1(-17).
a=-(3n-17)n
Step 1.3.3.5
Simplify the expression.
Tap for more steps...
Step 1.3.3.5.1
Rewrite -(3n-17) as -1(3n-17).
a=-1(3n-17)n
Step 1.3.3.5.2
Move the negative in front of the fraction.
a=-3n-17n
a=-3n-17n
a=-3n-17n
a=-3n-17n
a=-3n-17n
Step 2
Set the denominator in 3n-17n equal to 0 to find where the expression is undefined.
n=0
Step 3
The domain is all values of n that make the expression defined.
Interval Notation:
(-,0)(0,)
Set-Builder Notation:
{n|n0}
Step 4
 [x2  12  π  xdx ]