Linear Algebra Examples

Find the Domain 4x square root of 2x cube root of 3x
4x2x33x
Step 1
Set the radicand in 2x33x greater than or equal to 0 to find where the expression is defined.
2x33x0
Step 2
Solve for x.
Tap for more steps...
Step 2.1
To remove the radical on the left side of the inequality, cube both sides of the inequality.
(2x33x)303
Step 2.2
Simplify each side of the inequality.
Tap for more steps...
Step 2.2.1
Use nax=axn to rewrite 33x as (3x)13.
(2x(3x)13)303
Step 2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.2.1
Simplify (2x(3x)13)3.
Tap for more steps...
Step 2.2.2.1.1
Apply the product rule to 3x.
(2x(313x13))303
Step 2.2.2.1.2
Rewrite using the commutative property of multiplication.
(2313xx13)303
Step 2.2.2.1.3
Multiply x by x13 by adding the exponents.
Tap for more steps...
Step 2.2.2.1.3.1
Move x13.
(2313(x13x))303
Step 2.2.2.1.3.2
Multiply x13 by x.
Tap for more steps...
Step 2.2.2.1.3.2.1
Raise x to the power of 1.
(2313(x13x1))303
Step 2.2.2.1.3.2.2
Use the power rule aman=am+n to combine exponents.
(2313x13+1)303
(2313x13+1)303
Step 2.2.2.1.3.3
Write 1 as a fraction with a common denominator.
(2313x13+33)303
Step 2.2.2.1.3.4
Combine the numerators over the common denominator.
(2313x1+33)303
Step 2.2.2.1.3.5
Add 1 and 3.
(2313x43)303
(2313x43)303
Step 2.2.2.1.4
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.2.2.1.4.1
Apply the product rule to 2313x43.
(2313)3(x43)303
Step 2.2.2.1.4.2
Apply the product rule to 2313.
23(313)3(x43)303
23(313)3(x43)303
Step 2.2.2.1.5
Raise 2 to the power of 3.
8(313)3(x43)303
Step 2.2.2.1.6
Multiply the exponents in (313)3.
Tap for more steps...
Step 2.2.2.1.6.1
Apply the power rule and multiply exponents, (am)n=amn.
83133(x43)303
Step 2.2.2.1.6.2
Cancel the common factor of 3.
Tap for more steps...
Step 2.2.2.1.6.2.1
Cancel the common factor.
83133(x43)303
Step 2.2.2.1.6.2.2
Rewrite the expression.
831(x43)303
831(x43)303
831(x43)303
Step 2.2.2.1.7
Evaluate the exponent.
83(x43)303
Step 2.2.2.1.8
Multiply 8 by 3.
24(x43)303
Step 2.2.2.1.9
Multiply the exponents in (x43)3.
Tap for more steps...
Step 2.2.2.1.9.1
Apply the power rule and multiply exponents, (am)n=amn.
24x43303
Step 2.2.2.1.9.2
Cancel the common factor of 3.
Tap for more steps...
Step 2.2.2.1.9.2.1
Cancel the common factor.
24x43303
Step 2.2.2.1.9.2.2
Rewrite the expression.
24x403
24x403
24x403
24x403
24x403
Step 2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.3.1
Raising 0 to any positive power yields 0.
24x40
24x40
24x40
Step 2.3
Solve for x.
Tap for more steps...
Step 2.3.1
Divide each term in 24x40 by 24 and simplify.
Tap for more steps...
Step 2.3.1.1
Divide each term in 24x40 by 24.
24x424024
Step 2.3.1.2
Simplify the left side.
Tap for more steps...
Step 2.3.1.2.1
Cancel the common factor of 24.
Tap for more steps...
Step 2.3.1.2.1.1
Cancel the common factor.
24x424024
Step 2.3.1.2.1.2
Divide x4 by 1.
x4024
x4024
x4024
Step 2.3.1.3
Simplify the right side.
Tap for more steps...
Step 2.3.1.3.1
Divide 0 by 24.
x40
x40
x40
Step 2.3.2
Since the left side has an even power, it is always positive for all real numbers.
All real numbers
All real numbers
All real numbers
Step 3
The domain is all real numbers.
Interval Notation:
(-,)
Set-Builder Notation:
{x|x}
Step 4
 [x2  12  π  xdx ]