Enter a problem...
Linear Algebra Examples
4x√2x3√3x
Step 1
Set the radicand in √2x3√3x greater than or equal to 0 to find where the expression is defined.
2x3√3x≥0
Step 2
Step 2.1
To remove the radical on the left side of the inequality, cube both sides of the inequality.
(2x3√3x)3≥03
Step 2.2
Simplify each side of the inequality.
Step 2.2.1
Use n√ax=axn to rewrite 3√3x as (3x)13.
(2x(3x)13)3≥03
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Simplify (2x(3x)13)3.
Step 2.2.2.1.1
Apply the product rule to 3x.
(2x(313x13))3≥03
Step 2.2.2.1.2
Rewrite using the commutative property of multiplication.
(2⋅313x⋅x13)3≥03
Step 2.2.2.1.3
Multiply x by x13 by adding the exponents.
Step 2.2.2.1.3.1
Move x13.
(2⋅313(x13x))3≥03
Step 2.2.2.1.3.2
Multiply x13 by x.
Step 2.2.2.1.3.2.1
Raise x to the power of 1.
(2⋅313(x13x1))3≥03
Step 2.2.2.1.3.2.2
Use the power rule aman=am+n to combine exponents.
(2⋅313x13+1)3≥03
(2⋅313x13+1)3≥03
Step 2.2.2.1.3.3
Write 1 as a fraction with a common denominator.
(2⋅313x13+33)3≥03
Step 2.2.2.1.3.4
Combine the numerators over the common denominator.
(2⋅313x1+33)3≥03
Step 2.2.2.1.3.5
Add 1 and 3.
(2⋅313x43)3≥03
(2⋅313x43)3≥03
Step 2.2.2.1.4
Use the power rule (ab)n=anbn to distribute the exponent.
Step 2.2.2.1.4.1
Apply the product rule to 2⋅313x43.
(2⋅313)3(x43)3≥03
Step 2.2.2.1.4.2
Apply the product rule to 2⋅313.
23⋅(313)3(x43)3≥03
23⋅(313)3(x43)3≥03
Step 2.2.2.1.5
Raise 2 to the power of 3.
8⋅(313)3(x43)3≥03
Step 2.2.2.1.6
Multiply the exponents in (313)3.
Step 2.2.2.1.6.1
Apply the power rule and multiply exponents, (am)n=amn.
8⋅313⋅3(x43)3≥03
Step 2.2.2.1.6.2
Cancel the common factor of 3.
Step 2.2.2.1.6.2.1
Cancel the common factor.
8⋅313⋅3(x43)3≥03
Step 2.2.2.1.6.2.2
Rewrite the expression.
8⋅31(x43)3≥03
8⋅31(x43)3≥03
8⋅31(x43)3≥03
Step 2.2.2.1.7
Evaluate the exponent.
8⋅3(x43)3≥03
Step 2.2.2.1.8
Multiply 8 by 3.
24(x43)3≥03
Step 2.2.2.1.9
Multiply the exponents in (x43)3.
Step 2.2.2.1.9.1
Apply the power rule and multiply exponents, (am)n=amn.
24x43⋅3≥03
Step 2.2.2.1.9.2
Cancel the common factor of 3.
Step 2.2.2.1.9.2.1
Cancel the common factor.
24x43⋅3≥03
Step 2.2.2.1.9.2.2
Rewrite the expression.
24x4≥03
24x4≥03
24x4≥03
24x4≥03
24x4≥03
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Raising 0 to any positive power yields 0.
24x4≥0
24x4≥0
24x4≥0
Step 2.3
Solve for x.
Step 2.3.1
Divide each term in 24x4≥0 by 24 and simplify.
Step 2.3.1.1
Divide each term in 24x4≥0 by 24.
24x424≥024
Step 2.3.1.2
Simplify the left side.
Step 2.3.1.2.1
Cancel the common factor of 24.
Step 2.3.1.2.1.1
Cancel the common factor.
24x424≥024
Step 2.3.1.2.1.2
Divide x4 by 1.
x4≥024
x4≥024
x4≥024
Step 2.3.1.3
Simplify the right side.
Step 2.3.1.3.1
Divide 0 by 24.
x4≥0
x4≥0
x4≥0
Step 2.3.2
Since the left side has an even power, it is always positive for all real numbers.
All real numbers
All real numbers
All real numbers
Step 3
The domain is all real numbers.
Interval Notation:
(-∞,∞)
Set-Builder Notation:
{x|x∈ℝ}
Step 4