Linear Algebra Examples

Find the Domain 5a^2+3b^2+3d^2+2ab+2ad+6bd=7g^2+4h^2
Step 1
Move all the expressions to the left side of the equation.
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from both sides of the equation.
Step 2
Use the quadratic formula to find the solutions.
Step 3
Substitute the values , , and into the quadratic formula and solve for .
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Apply the distributive property.
Step 4.1.2
Multiply by .
Step 4.1.3
Multiply by .
Step 4.1.4
Add parentheses.
Step 4.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 4.1.5.1
Rewrite as .
Step 4.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 4.1.5.2.1
Apply the distributive property.
Step 4.1.5.2.2
Apply the distributive property.
Step 4.1.5.2.3
Apply the distributive property.
Step 4.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 4.1.5.3.1
Simplify each term.
Tap for more steps...
Step 4.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 4.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 4.1.5.3.1.2.1
Move .
Step 4.1.5.3.1.2.2
Multiply by .
Step 4.1.5.3.1.3
Multiply by .
Step 4.1.5.3.1.4
Rewrite using the commutative property of multiplication.
Step 4.1.5.3.1.5
Multiply by .
Step 4.1.5.3.1.6
Rewrite using the commutative property of multiplication.
Step 4.1.5.3.1.7
Multiply by .
Step 4.1.5.3.1.8
Rewrite using the commutative property of multiplication.
Step 4.1.5.3.1.9
Multiply by by adding the exponents.
Tap for more steps...
Step 4.1.5.3.1.9.1
Move .
Step 4.1.5.3.1.9.2
Multiply by .
Step 4.1.5.3.1.10
Multiply by .
Step 4.1.5.3.2
Add and .
Tap for more steps...
Step 4.1.5.3.2.1
Move .
Step 4.1.5.3.2.2
Add and .
Step 4.1.6
Factor out of .
Tap for more steps...
Step 4.1.6.1
Factor out of .
Step 4.1.6.2
Factor out of .
Step 4.1.6.3
Factor out of .
Step 4.1.6.4
Factor out of .
Step 4.1.6.5
Factor out of .
Step 4.1.6.6
Factor out of .
Step 4.1.6.7
Factor out of .
Step 4.1.7
Replace all occurrences of with .
Step 4.1.8
Simplify.
Tap for more steps...
Step 4.1.8.1
Simplify each term.
Tap for more steps...
Step 4.1.8.1.1
Apply the distributive property.
Step 4.1.8.1.2
Simplify.
Tap for more steps...
Step 4.1.8.1.2.1
Multiply by .
Step 4.1.8.1.2.2
Multiply by .
Step 4.1.8.1.2.3
Multiply by .
Step 4.1.8.1.2.4
Multiply by .
Step 4.1.8.1.2.5
Multiply by .
Step 4.1.8.1.3
Apply the distributive property.
Step 4.1.8.1.4
Simplify.
Tap for more steps...
Step 4.1.8.1.4.1
Multiply by .
Step 4.1.8.1.4.2
Multiply by .
Step 4.1.8.1.4.3
Multiply by .
Step 4.1.8.1.4.4
Multiply by .
Step 4.1.8.1.4.5
Multiply by .
Step 4.1.8.2
Subtract from .
Step 4.1.8.3
Subtract from .
Step 4.1.8.4
Subtract from .
Step 4.1.9
Rewrite as .
Step 4.1.10
Pull terms out from under the radical.
Step 4.2
Multiply by .
Step 5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Apply the distributive property.
Step 5.1.2
Multiply by .
Step 5.1.3
Multiply by .
Step 5.1.4
Add parentheses.
Step 5.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 5.1.5.1
Rewrite as .
Step 5.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 5.1.5.2.1
Apply the distributive property.
Step 5.1.5.2.2
Apply the distributive property.
Step 5.1.5.2.3
Apply the distributive property.
Step 5.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 5.1.5.3.1
Simplify each term.
Tap for more steps...
Step 5.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 5.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 5.1.5.3.1.2.1
Move .
Step 5.1.5.3.1.2.2
Multiply by .
Step 5.1.5.3.1.3
Multiply by .
Step 5.1.5.3.1.4
Rewrite using the commutative property of multiplication.
Step 5.1.5.3.1.5
Multiply by .
Step 5.1.5.3.1.6
Rewrite using the commutative property of multiplication.
Step 5.1.5.3.1.7
Multiply by .
Step 5.1.5.3.1.8
Rewrite using the commutative property of multiplication.
Step 5.1.5.3.1.9
Multiply by by adding the exponents.
Tap for more steps...
Step 5.1.5.3.1.9.1
Move .
Step 5.1.5.3.1.9.2
Multiply by .
Step 5.1.5.3.1.10
Multiply by .
Step 5.1.5.3.2
Add and .
Tap for more steps...
Step 5.1.5.3.2.1
Move .
Step 5.1.5.3.2.2
Add and .
Step 5.1.6
Factor out of .
Tap for more steps...
Step 5.1.6.1
Factor out of .
Step 5.1.6.2
Factor out of .
Step 5.1.6.3
Factor out of .
Step 5.1.6.4
Factor out of .
Step 5.1.6.5
Factor out of .
Step 5.1.6.6
Factor out of .
Step 5.1.6.7
Factor out of .
Step 5.1.7
Replace all occurrences of with .
Step 5.1.8
Simplify.
Tap for more steps...
Step 5.1.8.1
Simplify each term.
Tap for more steps...
Step 5.1.8.1.1
Apply the distributive property.
Step 5.1.8.1.2
Simplify.
Tap for more steps...
Step 5.1.8.1.2.1
Multiply by .
Step 5.1.8.1.2.2
Multiply by .
Step 5.1.8.1.2.3
Multiply by .
Step 5.1.8.1.2.4
Multiply by .
Step 5.1.8.1.2.5
Multiply by .
Step 5.1.8.1.3
Apply the distributive property.
Step 5.1.8.1.4
Simplify.
Tap for more steps...
Step 5.1.8.1.4.1
Multiply by .
Step 5.1.8.1.4.2
Multiply by .
Step 5.1.8.1.4.3
Multiply by .
Step 5.1.8.1.4.4
Multiply by .
Step 5.1.8.1.4.5
Multiply by .
Step 5.1.8.2
Subtract from .
Step 5.1.8.3
Subtract from .
Step 5.1.8.4
Subtract from .
Step 5.1.9
Rewrite as .
Step 5.1.10
Pull terms out from under the radical.
Step 5.2
Multiply by .
Step 5.3
Change the to .
Step 5.4
Cancel the common factor of and .
Tap for more steps...
Step 5.4.1
Factor out of .
Step 5.4.2
Factor out of .
Step 5.4.3
Factor out of .
Step 5.4.4
Factor out of .
Step 5.4.5
Factor out of .
Step 5.4.6
Cancel the common factors.
Tap for more steps...
Step 5.4.6.1
Factor out of .
Step 5.4.6.2
Cancel the common factor.
Step 5.4.6.3
Rewrite the expression.
Step 5.5
Factor out of .
Step 5.6
Factor out of .
Step 5.7
Factor out of .
Step 5.8
Factor out of .
Step 5.9
Factor out of .
Step 5.10
Rewrite as .
Step 5.11
Move the negative in front of the fraction.
Step 6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Apply the distributive property.
Step 6.1.2
Multiply by .
Step 6.1.3
Multiply by .
Step 6.1.4
Add parentheses.
Step 6.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 6.1.5.1
Rewrite as .
Step 6.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 6.1.5.2.1
Apply the distributive property.
Step 6.1.5.2.2
Apply the distributive property.
Step 6.1.5.2.3
Apply the distributive property.
Step 6.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 6.1.5.3.1
Simplify each term.
Tap for more steps...
Step 6.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 6.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 6.1.5.3.1.2.1
Move .
Step 6.1.5.3.1.2.2
Multiply by .
Step 6.1.5.3.1.3
Multiply by .
Step 6.1.5.3.1.4
Rewrite using the commutative property of multiplication.
Step 6.1.5.3.1.5
Multiply by .
Step 6.1.5.3.1.6
Rewrite using the commutative property of multiplication.
Step 6.1.5.3.1.7
Multiply by .
Step 6.1.5.3.1.8
Rewrite using the commutative property of multiplication.
Step 6.1.5.3.1.9
Multiply by by adding the exponents.
Tap for more steps...
Step 6.1.5.3.1.9.1
Move .
Step 6.1.5.3.1.9.2
Multiply by .
Step 6.1.5.3.1.10
Multiply by .
Step 6.1.5.3.2
Add and .
Tap for more steps...
Step 6.1.5.3.2.1
Move .
Step 6.1.5.3.2.2
Add and .
Step 6.1.6
Factor out of .
Tap for more steps...
Step 6.1.6.1
Factor out of .
Step 6.1.6.2
Factor out of .
Step 6.1.6.3
Factor out of .
Step 6.1.6.4
Factor out of .
Step 6.1.6.5
Factor out of .
Step 6.1.6.6
Factor out of .
Step 6.1.6.7
Factor out of .
Step 6.1.7
Replace all occurrences of with .
Step 6.1.8
Simplify.
Tap for more steps...
Step 6.1.8.1
Simplify each term.
Tap for more steps...
Step 6.1.8.1.1
Apply the distributive property.
Step 6.1.8.1.2
Simplify.
Tap for more steps...
Step 6.1.8.1.2.1
Multiply by .
Step 6.1.8.1.2.2
Multiply by .
Step 6.1.8.1.2.3
Multiply by .
Step 6.1.8.1.2.4
Multiply by .
Step 6.1.8.1.2.5
Multiply by .
Step 6.1.8.1.3
Apply the distributive property.
Step 6.1.8.1.4
Simplify.
Tap for more steps...
Step 6.1.8.1.4.1
Multiply by .
Step 6.1.8.1.4.2
Multiply by .
Step 6.1.8.1.4.3
Multiply by .
Step 6.1.8.1.4.4
Multiply by .
Step 6.1.8.1.4.5
Multiply by .
Step 6.1.8.2
Subtract from .
Step 6.1.8.3
Subtract from .
Step 6.1.8.4
Subtract from .
Step 6.1.9
Rewrite as .
Step 6.1.10
Pull terms out from under the radical.
Step 6.2
Multiply by .
Step 6.3
Change the to .
Step 6.4
Cancel the common factor of and .
Tap for more steps...
Step 6.4.1
Factor out of .
Step 6.4.2
Factor out of .
Step 6.4.3
Factor out of .
Step 6.4.4
Factor out of .
Step 6.4.5
Factor out of .
Step 6.4.6
Cancel the common factors.
Tap for more steps...
Step 6.4.6.1
Factor out of .
Step 6.4.6.2
Cancel the common factor.
Step 6.4.6.3
Rewrite the expression.
Step 6.5
Factor out of .
Step 6.6
Factor out of .
Step 6.7
Factor out of .
Step 6.8
Factor out of .
Step 6.9
Factor out of .
Step 6.10
Rewrite as .
Step 6.11
Move the negative in front of the fraction.
Step 7
The final answer is the combination of both solutions.
Step 8
Set the radicand in greater than or equal to to find where the expression is defined.
Step 9
Solve for .
Tap for more steps...
Step 9.1
Convert the inequality to an equation.
Step 9.2
Use the quadratic formula to find the solutions.
Step 9.3
Substitute the values , , and into the quadratic formula and solve for .
Step 9.4
Simplify.
Tap for more steps...
Step 9.4.1
Simplify the numerator.
Tap for more steps...
Step 9.4.1.1
Add parentheses.
Step 9.4.1.2
Let . Substitute for all occurrences of .
Tap for more steps...
Step 9.4.1.2.1
Apply the product rule to .
Step 9.4.1.2.2
Raise to the power of .
Step 9.4.1.3
Factor out of .
Tap for more steps...
Step 9.4.1.3.1
Factor out of .
Step 9.4.1.3.2
Factor out of .
Step 9.4.1.3.3
Factor out of .
Step 9.4.1.4
Replace all occurrences of with .
Step 9.4.1.5
Simplify.
Tap for more steps...
Step 9.4.1.5.1
Simplify each term.
Tap for more steps...
Step 9.4.1.5.1.1
Apply the distributive property.
Step 9.4.1.5.1.2
Simplify.
Tap for more steps...
Step 9.4.1.5.1.2.1
Multiply by .
Step 9.4.1.5.1.2.2
Multiply by .
Step 9.4.1.5.1.2.3
Multiply by .
Step 9.4.1.5.1.3
Apply the distributive property.
Step 9.4.1.5.1.4
Simplify.
Tap for more steps...
Step 9.4.1.5.1.4.1
Multiply by .
Step 9.4.1.5.1.4.2
Multiply by .
Step 9.4.1.5.1.4.3
Multiply by .
Step 9.4.1.5.2
Subtract from .
Step 9.4.1.5.3
Add and .
Step 9.4.1.6
Factor out of .
Tap for more steps...
Step 9.4.1.6.1
Factor out of .
Step 9.4.1.6.2
Factor out of .
Step 9.4.1.6.3
Factor out of .
Step 9.4.1.7
Multiply by .
Step 9.4.1.8
Rewrite as .
Tap for more steps...
Step 9.4.1.8.1
Factor out of .
Step 9.4.1.8.2
Rewrite as .
Step 9.4.1.8.3
Rewrite as .
Step 9.4.1.8.4
Add parentheses.
Step 9.4.1.9
Pull terms out from under the radical.
Step 9.4.1.10
Apply the product rule to .
Step 9.4.1.11
Raise to the power of .
Step 9.4.2
Multiply by .
Step 9.4.3
Simplify .
Step 9.4.4
Move the negative in front of the fraction.
Step 9.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 9.5.1
Simplify the numerator.
Tap for more steps...
Step 9.5.1.1
Add parentheses.
Step 9.5.1.2
Let . Substitute for all occurrences of .
Tap for more steps...
Step 9.5.1.2.1
Apply the product rule to .
Step 9.5.1.2.2
Raise to the power of .
Step 9.5.1.3
Factor out of .
Tap for more steps...
Step 9.5.1.3.1
Factor out of .
Step 9.5.1.3.2
Factor out of .
Step 9.5.1.3.3
Factor out of .
Step 9.5.1.4
Replace all occurrences of with .
Step 9.5.1.5
Simplify.
Tap for more steps...
Step 9.5.1.5.1
Simplify each term.
Tap for more steps...
Step 9.5.1.5.1.1
Apply the distributive property.
Step 9.5.1.5.1.2
Simplify.
Tap for more steps...
Step 9.5.1.5.1.2.1
Multiply by .
Step 9.5.1.5.1.2.2
Multiply by .
Step 9.5.1.5.1.2.3
Multiply by .
Step 9.5.1.5.1.3
Apply the distributive property.
Step 9.5.1.5.1.4
Simplify.
Tap for more steps...
Step 9.5.1.5.1.4.1
Multiply by .
Step 9.5.1.5.1.4.2
Multiply by .
Step 9.5.1.5.1.4.3
Multiply by .
Step 9.5.1.5.2
Subtract from .
Step 9.5.1.5.3
Add and .
Step 9.5.1.6
Factor out of .
Tap for more steps...
Step 9.5.1.6.1
Factor out of .
Step 9.5.1.6.2
Factor out of .
Step 9.5.1.6.3
Factor out of .
Step 9.5.1.7
Multiply by .
Step 9.5.1.8
Rewrite as .
Tap for more steps...
Step 9.5.1.8.1
Factor out of .
Step 9.5.1.8.2
Rewrite as .
Step 9.5.1.8.3
Rewrite as .
Step 9.5.1.8.4
Add parentheses.
Step 9.5.1.9
Pull terms out from under the radical.
Step 9.5.1.10
Apply the product rule to .
Step 9.5.1.11
Raise to the power of .
Step 9.5.2
Multiply by .
Step 9.5.3
Simplify .
Step 9.5.4
Move the negative in front of the fraction.
Step 9.5.5
Change the to .
Step 9.6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 9.6.1
Simplify the numerator.
Tap for more steps...
Step 9.6.1.1
Add parentheses.
Step 9.6.1.2
Let . Substitute for all occurrences of .
Tap for more steps...
Step 9.6.1.2.1
Apply the product rule to .
Step 9.6.1.2.2
Raise to the power of .
Step 9.6.1.3
Factor out of .
Tap for more steps...
Step 9.6.1.3.1
Factor out of .
Step 9.6.1.3.2
Factor out of .
Step 9.6.1.3.3
Factor out of .
Step 9.6.1.4
Replace all occurrences of with .
Step 9.6.1.5
Simplify.
Tap for more steps...
Step 9.6.1.5.1
Simplify each term.
Tap for more steps...
Step 9.6.1.5.1.1
Apply the distributive property.
Step 9.6.1.5.1.2
Simplify.
Tap for more steps...
Step 9.6.1.5.1.2.1
Multiply by .
Step 9.6.1.5.1.2.2
Multiply by .
Step 9.6.1.5.1.2.3
Multiply by .
Step 9.6.1.5.1.3
Apply the distributive property.
Step 9.6.1.5.1.4
Simplify.
Tap for more steps...
Step 9.6.1.5.1.4.1
Multiply by .
Step 9.6.1.5.1.4.2
Multiply by .
Step 9.6.1.5.1.4.3
Multiply by .
Step 9.6.1.5.2
Subtract from .
Step 9.6.1.5.3
Add and .
Step 9.6.1.6
Factor out of .
Tap for more steps...
Step 9.6.1.6.1
Factor out of .
Step 9.6.1.6.2
Factor out of .
Step 9.6.1.6.3
Factor out of .
Step 9.6.1.7
Multiply by .
Step 9.6.1.8
Rewrite as .
Tap for more steps...
Step 9.6.1.8.1
Factor out of .
Step 9.6.1.8.2
Rewrite as .
Step 9.6.1.8.3
Rewrite as .
Step 9.6.1.8.4
Add parentheses.
Step 9.6.1.9
Pull terms out from under the radical.
Step 9.6.1.10
Apply the product rule to .
Step 9.6.1.11
Raise to the power of .
Step 9.6.2
Multiply by .
Step 9.6.3
Simplify .
Step 9.6.4
Move the negative in front of the fraction.
Step 9.6.5
Change the to .
Step 9.7
Consolidate the solutions.
Step 10
The domain is all real numbers.
Interval Notation:
Set-Builder Notation: