Enter a problem...
Linear Algebra Examples
z=4x-4y-x2-y2z=4x−4y−x2−y2
Step 1
Rewrite the equation as 4x-4y-x2-y2=z4x−4y−x2−y2=z.
4x-4y-x2-y2=z4x−4y−x2−y2=z
Step 2
Subtract zz from both sides of the equation.
4x-4y-x2-y2-z=04x−4y−x2−y2−z=0
Step 3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 4
Substitute the values a=-1a=−1, b=-4b=−4, and c=4x-x2-zc=4x−x2−z into the quadratic formula and solve for yy.
4±√(-4)2-4⋅(-1⋅(4x-x2-z))2⋅-14±√(−4)2−4⋅(−1⋅(4x−x2−z))2⋅−1
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Factor -4−4 out of (-4)2-4⋅-1⋅(4x-x2-z)(−4)2−4⋅−1⋅(4x−x2−z).
Step 5.1.1.1
Factor -4−4 out of (-4)2(−4)2.
y=4±√-4⋅-4-4⋅-1⋅(4x-x2-z)2⋅-1y=4±√−4⋅−4−4⋅−1⋅(4x−x2−z)2⋅−1
Step 5.1.1.2
Factor -4−4 out of -4⋅-1⋅(4x-x2-z)−4⋅−1⋅(4x−x2−z).
y=4±√-4⋅-4-4(-1⋅(4x-x2-z))2⋅-1y=4±√−4⋅−4−4(−1⋅(4x−x2−z))2⋅−1
Step 5.1.1.3
Factor -4−4 out of -4⋅-4-4(-1⋅(4x-x2-z))−4⋅−4−4(−1⋅(4x−x2−z)).
y=4±√-4(-4-1⋅(4x-x2-z))2⋅-1y=4±√−4(−4−1⋅(4x−x2−z))2⋅−1
y=4±√-4(-4-1⋅(4x-x2-z))2⋅-1y=4±√−4(−4−1⋅(4x−x2−z))2⋅−1
Step 5.1.2
Factor -1−1 out of -4-1⋅(4x-x2-z)−4−1⋅(4x−x2−z).
Step 5.1.2.1
Reorder the expression.
Step 5.1.2.1.1
Move 4x4x.
y=4±√-4(-4-1⋅(-x2-z+4x))2⋅-1y=4±√−4(−4−1⋅(−x2−z+4x))2⋅−1
Step 5.1.2.1.2
Reorder -4−4 and -1⋅(-x2-z+4x)−1⋅(−x2−z+4x).
y=4±√-4(-1⋅(-x2-z+4x)-4)2⋅-1y=4±√−4(−1⋅(−x2−z+4x)−4)2⋅−1
y=4±√-4(-1(-x2-z+4x)-4)2⋅-1y=4±√−4(−1(−x2−z+4x)−4)2⋅−1
Step 5.1.2.2
Rewrite -4−4 as -1(4)−1(4).
y=4±√-4(-1(-x2-z+4x)-1⋅4)2⋅-1y=4±√−4(−1(−x2−z+4x)−1⋅4)2⋅−1
Step 5.1.2.3
Factor -1−1 out of -1(-x2-z+4x)-1(4)−1(−x2−z+4x)−1(4).
y=4±√-4(-1(-x2-z+4x+4))2⋅-1y=4±√−4(−1(−x2−z+4x+4))2⋅−1
Step 5.1.2.4
Rewrite -1(-x2-z+4x+4)−1(−x2−z+4x+4) as -(-x2-z+4x+4)−(−x2−z+4x+4).
y=4±√-4(-(-x2-z+4x+4))2⋅-1y=4±√−4(−(−x2−z+4x+4))2⋅−1
y=4±√-4⋅(-1(-x2-z+4x+4))2⋅-1y=4±√−4⋅(−1(−x2−z+4x+4))2⋅−1
Step 5.1.3
Combine exponents.
Step 5.1.3.1
Factor out negative.
y=4±√-(-4(-x2-z+4x+4))2⋅-1y=4±√−(−4(−x2−z+4x+4))2⋅−1
Step 5.1.3.2
Multiply -4−4 by -1−1.
y=4±√4(-x2-z+4x+4)2⋅-1y=4±√4(−x2−z+4x+4)2⋅−1
y=4±√4(-x2-z+4x+4)2⋅-1y=4±√4(−x2−z+4x+4)2⋅−1
Step 5.1.4
Rewrite 4(-x2-z+4x+4)4(−x2−z+4x+4) as 22(-x2-z+22x+4)22(−x2−z+22x+4).
Step 5.1.4.1
Rewrite 44 as 2222.
y=4±√22(-x2-z+4x+4)2⋅-1y=4±√22(−x2−z+4x+4)2⋅−1
Step 5.1.4.2
Rewrite 44 as 2222.
y=4±√22(-x2-z+22x+4)2⋅-1y=4±√22(−x2−z+22x+4)2⋅−1
y=4±√22(-x2-z+22x+4)2⋅-1y=4±√22(−x2−z+22x+4)2⋅−1
Step 5.1.5
Pull terms out from under the radical.
y=4±2√-x2-z+22x+42⋅-1y=4±2√−x2−z+22x+42⋅−1
Step 5.1.6
Raise 22 to the power of 22.
y=4±2√-x2-z+4x+42⋅-1y=4±2√−x2−z+4x+42⋅−1
y=4±2√-x2-z+4x+42⋅-1y=4±2√−x2−z+4x+42⋅−1
Step 5.2
Multiply 22 by -1−1.
y=4±2√-x2-z+4x+4-2y=4±2√−x2−z+4x+4−2
Step 5.3
Simplify 4±2√-x2-z+4x+4-24±2√−x2−z+4x+4−2.
y=2±√-x2-z+4x+4-1y=2±√−x2−z+4x+4−1
Step 5.4
Move the negative one from the denominator of 2±√-x2-z+4x+4-12±√−x2−z+4x+4−1.
y=-1⋅(2±√-x2-z+4x+4)y=−1⋅(2±√−x2−z+4x+4)
Step 5.5
Rewrite -1⋅(2±√-x2-z+4x+4)−1⋅(2±√−x2−z+4x+4) as -(2±√-x2-z+4x+4)−(2±√−x2−z+4x+4).
y=-(2±√-x2-z+4x+4)y=−(2±√−x2−z+4x+4)
y=-(2±√-x2-z+4x+4)y=−(2±√−x2−z+4x+4)
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Factor -4−4 out of (-4)2-4⋅-1⋅(4x-x2-z)(−4)2−4⋅−1⋅(4x−x2−z).
Step 6.1.1.1
Factor -4−4 out of (-4)2(−4)2.
y=4±√-4⋅-4-4⋅-1⋅(4x-x2-z)2⋅-1y=4±√−4⋅−4−4⋅−1⋅(4x−x2−z)2⋅−1
Step 6.1.1.2
Factor -4−4 out of -4⋅-1⋅(4x-x2-z)−4⋅−1⋅(4x−x2−z).
y=4±√-4⋅-4-4(-1⋅(4x-x2-z))2⋅-1y=4±√−4⋅−4−4(−1⋅(4x−x2−z))2⋅−1
Step 6.1.1.3
Factor -4−4 out of -4⋅-4-4(-1⋅(4x-x2-z))−4⋅−4−4(−1⋅(4x−x2−z)).
y=4±√-4(-4-1⋅(4x-x2-z))2⋅-1y=4±√−4(−4−1⋅(4x−x2−z))2⋅−1
y=4±√-4(-4-1⋅(4x-x2-z))2⋅-1y=4±√−4(−4−1⋅(4x−x2−z))2⋅−1
Step 6.1.2
Factor -1−1 out of -4-1⋅(4x-x2-z)−4−1⋅(4x−x2−z).
Step 6.1.2.1
Reorder the expression.
Step 6.1.2.1.1
Move 4x4x.
y=4±√-4(-4-1⋅(-x2-z+4x))2⋅-1y=4±√−4(−4−1⋅(−x2−z+4x))2⋅−1
Step 6.1.2.1.2
Reorder -4−4 and -1⋅(-x2-z+4x)−1⋅(−x2−z+4x).
y=4±√-4(-1⋅(-x2-z+4x)-4)2⋅-1y=4±√−4(−1⋅(−x2−z+4x)−4)2⋅−1
y=4±√-4(-1(-x2-z+4x)-4)2⋅-1y=4±√−4(−1(−x2−z+4x)−4)2⋅−1
Step 6.1.2.2
Rewrite -4−4 as -1(4)−1(4).
y=4±√-4(-1(-x2-z+4x)-1⋅4)2⋅-1y=4±√−4(−1(−x2−z+4x)−1⋅4)2⋅−1
Step 6.1.2.3
Factor -1−1 out of -1(-x2-z+4x)-1(4)−1(−x2−z+4x)−1(4).
y=4±√-4(-1(-x2-z+4x+4))2⋅-1y=4±√−4(−1(−x2−z+4x+4))2⋅−1
Step 6.1.2.4
Rewrite -1(-x2-z+4x+4)−1(−x2−z+4x+4) as -(-x2-z+4x+4)−(−x2−z+4x+4).
y=4±√-4(-(-x2-z+4x+4))2⋅-1y=4±√−4(−(−x2−z+4x+4))2⋅−1
y=4±√-4⋅(-1(-x2-z+4x+4))2⋅-1y=4±√−4⋅(−1(−x2−z+4x+4))2⋅−1
Step 6.1.3
Combine exponents.
Step 6.1.3.1
Factor out negative.
y=4±√-(-4(-x2-z+4x+4))2⋅-1y=4±√−(−4(−x2−z+4x+4))2⋅−1
Step 6.1.3.2
Multiply -4−4 by -1−1.
y=4±√4(-x2-z+4x+4)2⋅-1y=4±√4(−x2−z+4x+4)2⋅−1
y=4±√4(-x2-z+4x+4)2⋅-1y=4±√4(−x2−z+4x+4)2⋅−1
Step 6.1.4
Rewrite 4(-x2-z+4x+4)4(−x2−z+4x+4) as 22(-x2-z+22x+4)22(−x2−z+22x+4).
Step 6.1.4.1
Rewrite 44 as 2222.
y=4±√22(-x2-z+4x+4)2⋅-1y=4±√22(−x2−z+4x+4)2⋅−1
Step 6.1.4.2
Rewrite 44 as 2222.
y=4±√22(-x2-z+22x+4)2⋅-1y=4±√22(−x2−z+22x+4)2⋅−1
y=4±√22(-x2-z+22x+4)2⋅-1y=4±√22(−x2−z+22x+4)2⋅−1
Step 6.1.5
Pull terms out from under the radical.
y=4±2√-x2-z+22x+42⋅-1y=4±2√−x2−z+22x+42⋅−1
Step 6.1.6
Raise 22 to the power of 22.
y=4±2√-x2-z+4x+42⋅-1y=4±2√−x2−z+4x+42⋅−1
y=4±2√-x2-z+4x+42⋅-1y=4±2√−x2−z+4x+42⋅−1
Step 6.2
Multiply 22 by -1−1.
y=4±2√-x2-z+4x+4-2y=4±2√−x2−z+4x+4−2
Step 6.3
Simplify 4±2√-x2-z+4x+4-24±2√−x2−z+4x+4−2.
y=2±√-x2-z+4x+4-1y=2±√−x2−z+4x+4−1
Step 6.4
Move the negative one from the denominator of 2±√-x2-z+4x+4-12±√−x2−z+4x+4−1.
y=-1⋅(2±√-x2-z+4x+4)y=−1⋅(2±√−x2−z+4x+4)
Step 6.5
Rewrite -1⋅(2±√-x2-z+4x+4)−1⋅(2±√−x2−z+4x+4) as -(2±√-x2-z+4x+4)−(2±√−x2−z+4x+4).
y=-(2±√-x2-z+4x+4)y=−(2±√−x2−z+4x+4)
Step 6.6
Change the ±± to ++.
y=-(2+√-x2-z+4x+4)y=−(2+√−x2−z+4x+4)
Step 6.7
Apply the distributive property.
y=-1⋅2-√-x2-z+4x+4y=−1⋅2−√−x2−z+4x+4
Step 6.8
Multiply -1−1 by 22.
y=-2-√-x2-z+4x+4y=−2−√−x2−z+4x+4
y=-2-√-x2-z+4x+4y=−2−√−x2−z+4x+4
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Factor -4−4 out of (-4)2-4⋅-1⋅(4x-x2-z)(−4)2−4⋅−1⋅(4x−x2−z).
Step 7.1.1.1
Factor -4−4 out of (-4)2(−4)2.
y=4±√-4⋅-4-4⋅-1⋅(4x-x2-z)2⋅-1y=4±√−4⋅−4−4⋅−1⋅(4x−x2−z)2⋅−1
Step 7.1.1.2
Factor -4−4 out of -4⋅-1⋅(4x-x2-z)−4⋅−1⋅(4x−x2−z).
y=4±√-4⋅-4-4(-1⋅(4x-x2-z))2⋅-1y=4±√−4⋅−4−4(−1⋅(4x−x2−z))2⋅−1
Step 7.1.1.3
Factor -4−4 out of -4⋅-4-4(-1⋅(4x-x2-z))−4⋅−4−4(−1⋅(4x−x2−z)).
y=4±√-4(-4-1⋅(4x-x2-z))2⋅-1y=4±√−4(−4−1⋅(4x−x2−z))2⋅−1
y=4±√-4(-4-1⋅(4x-x2-z))2⋅-1y=4±√−4(−4−1⋅(4x−x2−z))2⋅−1
Step 7.1.2
Factor -1−1 out of -4-1⋅(4x-x2-z)−4−1⋅(4x−x2−z).
Step 7.1.2.1
Reorder the expression.
Step 7.1.2.1.1
Move 4x4x.
y=4±√-4(-4-1⋅(-x2-z+4x))2⋅-1y=4±√−4(−4−1⋅(−x2−z+4x))2⋅−1
Step 7.1.2.1.2
Reorder -4−4 and -1⋅(-x2-z+4x)−1⋅(−x2−z+4x).
y=4±√-4(-1⋅(-x2-z+4x)-4)2⋅-1y=4±√−4(−1⋅(−x2−z+4x)−4)2⋅−1
y=4±√-4(-1(-x2-z+4x)-4)2⋅-1y=4±√−4(−1(−x2−z+4x)−4)2⋅−1
Step 7.1.2.2
Rewrite -4−4 as -1(4)−1(4).
y=4±√-4(-1(-x2-z+4x)-1⋅4)2⋅-1y=4±√−4(−1(−x2−z+4x)−1⋅4)2⋅−1
Step 7.1.2.3
Factor -1−1 out of -1(-x2-z+4x)-1(4)−1(−x2−z+4x)−1(4).
y=4±√-4(-1(-x2-z+4x+4))2⋅-1y=4±√−4(−1(−x2−z+4x+4))2⋅−1
Step 7.1.2.4
Rewrite -1(-x2-z+4x+4)−1(−x2−z+4x+4) as -(-x2-z+4x+4)−(−x2−z+4x+4).
y=4±√-4(-(-x2-z+4x+4))2⋅-1y=4±√−4(−(−x2−z+4x+4))2⋅−1
y=4±√-4⋅(-1(-x2-z+4x+4))2⋅-1y=4±√−4⋅(−1(−x2−z+4x+4))2⋅−1
Step 7.1.3
Combine exponents.
Step 7.1.3.1
Factor out negative.
y=4±√-(-4(-x2-z+4x+4))2⋅-1y=4±√−(−4(−x2−z+4x+4))2⋅−1
Step 7.1.3.2
Multiply -4−4 by -1−1.
y=4±√4(-x2-z+4x+4)2⋅-1y=4±√4(−x2−z+4x+4)2⋅−1
y=4±√4(-x2-z+4x+4)2⋅-1y=4±√4(−x2−z+4x+4)2⋅−1
Step 7.1.4
Rewrite 4(-x2-z+4x+4)4(−x2−z+4x+4) as 22(-x2-z+22x+4)22(−x2−z+22x+4).
Step 7.1.4.1
Rewrite 44 as 2222.
y=4±√22(-x2-z+4x+4)2⋅-1y=4±√22(−x2−z+4x+4)2⋅−1
Step 7.1.4.2
Rewrite 44 as 2222.
y=4±√22(-x2-z+22x+4)2⋅-1y=4±√22(−x2−z+22x+4)2⋅−1
y=4±√22(-x2-z+22x+4)2⋅-1y=4±√22(−x2−z+22x+4)2⋅−1
Step 7.1.5
Pull terms out from under the radical.
y=4±2√-x2-z+22x+42⋅-1y=4±2√−x2−z+22x+42⋅−1
Step 7.1.6
Raise 2 to the power of 2.
y=4±2√-x2-z+4x+42⋅-1
y=4±2√-x2-z+4x+42⋅-1
Step 7.2
Multiply 2 by -1.
y=4±2√-x2-z+4x+4-2
Step 7.3
Simplify 4±2√-x2-z+4x+4-2.
y=2±√-x2-z+4x+4-1
Step 7.4
Move the negative one from the denominator of 2±√-x2-z+4x+4-1.
y=-1⋅(2±√-x2-z+4x+4)
Step 7.5
Rewrite -1⋅(2±√-x2-z+4x+4) as -(2±√-x2-z+4x+4).
y=-(2±√-x2-z+4x+4)
Step 7.6
Change the ± to -.
y=-(2-√-x2-z+4x+4)
Step 7.7
Apply the distributive property.
y=-1⋅2+√-x2-z+4x+4
Step 7.8
Multiply -1 by 2.
y=-2+√-x2-z+4x+4
Step 7.9
Multiply --√-x2-z+4x+4.
Step 7.9.1
Multiply -1 by -1.
y=-2+1√-x2-z+4x+4
Step 7.9.2
Multiply √-x2-z+4x+4 by 1.
y=-2+√-x2-z+4x+4
y=-2+√-x2-z+4x+4
y=-2+√-x2-z+4x+4
Step 8
The final answer is the combination of both solutions.
y=-2-√-x2-z+4x+4
y=-2+√-x2-z+4x+4
Step 9
Set the radicand in √-x2-z+4x+4 greater than or equal to 0 to find where the expression is defined.
-x2-z+4x+4≥0
Step 10
Step 10.1
Convert the inequality to an equation.
-x2-z+4x+4=0
Step 10.2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 10.3
Substitute the values a=-1, b=4, and c=-z+4 into the quadratic formula and solve for x.
-4±√42-4⋅(-1⋅(-z+4))2⋅-1
Step 10.4
Simplify.
Step 10.4.1
Simplify the numerator.
Step 10.4.1.1
Raise 4 to the power of 2.
x=-4±√16-4⋅-1⋅(-z+4)2⋅-1
Step 10.4.1.2
Multiply -4 by -1.
x=-4±√16+4⋅(-z+4)2⋅-1
Step 10.4.1.3
Apply the distributive property.
x=-4±√16+4(-z)+4⋅42⋅-1
Step 10.4.1.4
Multiply -1 by 4.
x=-4±√16-4z+4⋅42⋅-1
Step 10.4.1.5
Multiply 4 by 4.
x=-4±√16-4z+162⋅-1
Step 10.4.1.6
Add 16 and 16.
x=-4±√-4z+322⋅-1
Step 10.4.1.7
Factor 4 out of -4z+32.
Step 10.4.1.7.1
Factor 4 out of -4z.
x=-4±√4(-z)+322⋅-1
Step 10.4.1.7.2
Factor 4 out of 32.
x=-4±√4(-z)+4(8)2⋅-1
Step 10.4.1.7.3
Factor 4 out of 4(-z)+4(8).
x=-4±√4(-z+8)2⋅-1
x=-4±√4(-z+8)2⋅-1
Step 10.4.1.8
Rewrite 4 as 22.
x=-4±√22(-z+8)2⋅-1
Step 10.4.1.9
Pull terms out from under the radical.
x=-4±2√-z+82⋅-1
x=-4±2√-z+82⋅-1
Step 10.4.2
Multiply 2 by -1.
x=-4±2√-z+8-2
Step 10.4.3
Simplify -4±2√-z+8-2.
x=2±√-z+8
x=2±√-z+8
Step 10.5
Simplify the expression to solve for the + portion of the ±.
Step 10.5.1
Simplify the numerator.
Step 10.5.1.1
Raise 4 to the power of 2.
x=-4±√16-4⋅-1⋅(-z+4)2⋅-1
Step 10.5.1.2
Multiply -4 by -1.
x=-4±√16+4⋅(-z+4)2⋅-1
Step 10.5.1.3
Apply the distributive property.
x=-4±√16+4(-z)+4⋅42⋅-1
Step 10.5.1.4
Multiply -1 by 4.
x=-4±√16-4z+4⋅42⋅-1
Step 10.5.1.5
Multiply 4 by 4.
x=-4±√16-4z+162⋅-1
Step 10.5.1.6
Add 16 and 16.
x=-4±√-4z+322⋅-1
Step 10.5.1.7
Factor 4 out of -4z+32.
Step 10.5.1.7.1
Factor 4 out of -4z.
x=-4±√4(-z)+322⋅-1
Step 10.5.1.7.2
Factor 4 out of 32.
x=-4±√4(-z)+4(8)2⋅-1
Step 10.5.1.7.3
Factor 4 out of 4(-z)+4(8).
x=-4±√4(-z+8)2⋅-1
x=-4±√4(-z+8)2⋅-1
Step 10.5.1.8
Rewrite 4 as 22.
x=-4±√22(-z+8)2⋅-1
Step 10.5.1.9
Pull terms out from under the radical.
x=-4±2√-z+82⋅-1
x=-4±2√-z+82⋅-1
Step 10.5.2
Multiply 2 by -1.
x=-4±2√-z+8-2
Step 10.5.3
Simplify -4±2√-z+8-2.
x=2±√-z+8
Step 10.5.4
Change the ± to +.
x=2+√-z+8
x=2+√-z+8
Step 10.6
Simplify the expression to solve for the - portion of the ±.
Step 10.6.1
Simplify the numerator.
Step 10.6.1.1
Raise 4 to the power of 2.
x=-4±√16-4⋅-1⋅(-z+4)2⋅-1
Step 10.6.1.2
Multiply -4 by -1.
x=-4±√16+4⋅(-z+4)2⋅-1
Step 10.6.1.3
Apply the distributive property.
x=-4±√16+4(-z)+4⋅42⋅-1
Step 10.6.1.4
Multiply -1 by 4.
x=-4±√16-4z+4⋅42⋅-1
Step 10.6.1.5
Multiply 4 by 4.
x=-4±√16-4z+162⋅-1
Step 10.6.1.6
Add 16 and 16.
x=-4±√-4z+322⋅-1
Step 10.6.1.7
Factor 4 out of -4z+32.
Step 10.6.1.7.1
Factor 4 out of -4z.
x=-4±√4(-z)+322⋅-1
Step 10.6.1.7.2
Factor 4 out of 32.
x=-4±√4(-z)+4(8)2⋅-1
Step 10.6.1.7.3
Factor 4 out of 4(-z)+4(8).
x=-4±√4(-z+8)2⋅-1
x=-4±√4(-z+8)2⋅-1
Step 10.6.1.8
Rewrite 4 as 22.
x=-4±√22(-z+8)2⋅-1
Step 10.6.1.9
Pull terms out from under the radical.
x=-4±2√-z+82⋅-1
x=-4±2√-z+82⋅-1
Step 10.6.2
Multiply 2 by -1.
x=-4±2√-z+8-2
Step 10.6.3
Simplify -4±2√-z+8-2.
x=2±√-z+8
Step 10.6.4
Change the ± to -.
x=2-√-z+8
x=2-√-z+8
Step 10.7
Consolidate the solutions.
x=2+√-z+8
x=2-√-z+8
x=2+√-z+8
x=2-√-z+8
Step 11
The domain is all real numbers.
Interval Notation:
(-∞,∞)
Set-Builder Notation:
{x|x∈ℝ}