Linear Algebra Examples

Find the Domain z=4x-4y-x^2-y^2
z=4x-4y-x2-y2z=4x4yx2y2
Step 1
Rewrite the equation as 4x-4y-x2-y2=z4x4yx2y2=z.
4x-4y-x2-y2=z4x4yx2y2=z
Step 2
Subtract zz from both sides of the equation.
4x-4y-x2-y2-z=04x4yx2y2z=0
Step 3
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 4
Substitute the values a=-1a=1, b=-4b=4, and c=4x-x2-zc=4xx2z into the quadratic formula and solve for yy.
4±(-4)2-4(-1(4x-x2-z))2-14±(4)24(1(4xx2z))21
Step 5
Simplify.
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Factor -44 out of (-4)2-4-1(4x-x2-z)(4)241(4xx2z).
Tap for more steps...
Step 5.1.1.1
Factor -44 out of (-4)2(4)2.
y=4±-4-4-4-1(4x-x2-z)2-1y=4±4441(4xx2z)21
Step 5.1.1.2
Factor -44 out of -4-1(4x-x2-z)41(4xx2z).
y=4±-4-4-4(-1(4x-x2-z))2-1y=4±444(1(4xx2z))21
Step 5.1.1.3
Factor -44 out of -4-4-4(-1(4x-x2-z))444(1(4xx2z)).
y=4±-4(-4-1(4x-x2-z))2-1y=4±4(41(4xx2z))21
y=4±-4(-4-1(4x-x2-z))2-1y=4±4(41(4xx2z))21
Step 5.1.2
Factor -11 out of -4-1(4x-x2-z)41(4xx2z).
Tap for more steps...
Step 5.1.2.1
Reorder the expression.
Tap for more steps...
Step 5.1.2.1.1
Move 4x4x.
y=4±-4(-4-1(-x2-z+4x))2-1y=4±4(41(x2z+4x))21
Step 5.1.2.1.2
Reorder -44 and -1(-x2-z+4x)1(x2z+4x).
y=4±-4(-1(-x2-z+4x)-4)2-1y=4±4(1(x2z+4x)4)21
y=4±-4(-1(-x2-z+4x)-4)2-1y=4±4(1(x2z+4x)4)21
Step 5.1.2.2
Rewrite -44 as -1(4)1(4).
y=4±-4(-1(-x2-z+4x)-14)2-1y=4±4(1(x2z+4x)14)21
Step 5.1.2.3
Factor -11 out of -1(-x2-z+4x)-1(4)1(x2z+4x)1(4).
y=4±-4(-1(-x2-z+4x+4))2-1y=4±4(1(x2z+4x+4))21
Step 5.1.2.4
Rewrite -1(-x2-z+4x+4)1(x2z+4x+4) as -(-x2-z+4x+4)(x2z+4x+4).
y=4±-4(-(-x2-z+4x+4))2-1y=4±4((x2z+4x+4))21
y=4±-4(-1(-x2-z+4x+4))2-1y=4±4(1(x2z+4x+4))21
Step 5.1.3
Combine exponents.
Tap for more steps...
Step 5.1.3.1
Factor out negative.
y=4±-(-4(-x2-z+4x+4))2-1y=4±(4(x2z+4x+4))21
Step 5.1.3.2
Multiply -44 by -11.
y=4±4(-x2-z+4x+4)2-1y=4±4(x2z+4x+4)21
y=4±4(-x2-z+4x+4)2-1y=4±4(x2z+4x+4)21
Step 5.1.4
Rewrite 4(-x2-z+4x+4)4(x2z+4x+4) as 22(-x2-z+22x+4)22(x2z+22x+4).
Tap for more steps...
Step 5.1.4.1
Rewrite 44 as 2222.
y=4±22(-x2-z+4x+4)2-1y=4±22(x2z+4x+4)21
Step 5.1.4.2
Rewrite 44 as 2222.
y=4±22(-x2-z+22x+4)2-1y=4±22(x2z+22x+4)21
y=4±22(-x2-z+22x+4)2-1y=4±22(x2z+22x+4)21
Step 5.1.5
Pull terms out from under the radical.
y=4±2-x2-z+22x+42-1y=4±2x2z+22x+421
Step 5.1.6
Raise 22 to the power of 22.
y=4±2-x2-z+4x+42-1y=4±2x2z+4x+421
y=4±2-x2-z+4x+42-1y=4±2x2z+4x+421
Step 5.2
Multiply 22 by -11.
y=4±2-x2-z+4x+4-2y=4±2x2z+4x+42
Step 5.3
Simplify 4±2-x2-z+4x+4-24±2x2z+4x+42.
y=2±-x2-z+4x+4-1y=2±x2z+4x+41
Step 5.4
Move the negative one from the denominator of 2±-x2-z+4x+4-12±x2z+4x+41.
y=-1(2±-x2-z+4x+4)y=1(2±x2z+4x+4)
Step 5.5
Rewrite -1(2±-x2-z+4x+4)1(2±x2z+4x+4) as -(2±-x2-z+4x+4)(2±x2z+4x+4).
y=-(2±-x2-z+4x+4)y=(2±x2z+4x+4)
y=-(2±-x2-z+4x+4)y=(2±x2z+4x+4)
Step 6
Simplify the expression to solve for the ++ portion of the ±±.
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Factor -44 out of (-4)2-4-1(4x-x2-z)(4)241(4xx2z).
Tap for more steps...
Step 6.1.1.1
Factor -44 out of (-4)2(4)2.
y=4±-4-4-4-1(4x-x2-z)2-1y=4±4441(4xx2z)21
Step 6.1.1.2
Factor -44 out of -4-1(4x-x2-z)41(4xx2z).
y=4±-4-4-4(-1(4x-x2-z))2-1y=4±444(1(4xx2z))21
Step 6.1.1.3
Factor -44 out of -4-4-4(-1(4x-x2-z))444(1(4xx2z)).
y=4±-4(-4-1(4x-x2-z))2-1y=4±4(41(4xx2z))21
y=4±-4(-4-1(4x-x2-z))2-1y=4±4(41(4xx2z))21
Step 6.1.2
Factor -11 out of -4-1(4x-x2-z)41(4xx2z).
Tap for more steps...
Step 6.1.2.1
Reorder the expression.
Tap for more steps...
Step 6.1.2.1.1
Move 4x4x.
y=4±-4(-4-1(-x2-z+4x))2-1y=4±4(41(x2z+4x))21
Step 6.1.2.1.2
Reorder -44 and -1(-x2-z+4x)1(x2z+4x).
y=4±-4(-1(-x2-z+4x)-4)2-1y=4±4(1(x2z+4x)4)21
y=4±-4(-1(-x2-z+4x)-4)2-1y=4±4(1(x2z+4x)4)21
Step 6.1.2.2
Rewrite -44 as -1(4)1(4).
y=4±-4(-1(-x2-z+4x)-14)2-1y=4±4(1(x2z+4x)14)21
Step 6.1.2.3
Factor -11 out of -1(-x2-z+4x)-1(4)1(x2z+4x)1(4).
y=4±-4(-1(-x2-z+4x+4))2-1y=4±4(1(x2z+4x+4))21
Step 6.1.2.4
Rewrite -1(-x2-z+4x+4)1(x2z+4x+4) as -(-x2-z+4x+4)(x2z+4x+4).
y=4±-4(-(-x2-z+4x+4))2-1y=4±4((x2z+4x+4))21
y=4±-4(-1(-x2-z+4x+4))2-1y=4±4(1(x2z+4x+4))21
Step 6.1.3
Combine exponents.
Tap for more steps...
Step 6.1.3.1
Factor out negative.
y=4±-(-4(-x2-z+4x+4))2-1y=4±(4(x2z+4x+4))21
Step 6.1.3.2
Multiply -44 by -11.
y=4±4(-x2-z+4x+4)2-1y=4±4(x2z+4x+4)21
y=4±4(-x2-z+4x+4)2-1y=4±4(x2z+4x+4)21
Step 6.1.4
Rewrite 4(-x2-z+4x+4)4(x2z+4x+4) as 22(-x2-z+22x+4)22(x2z+22x+4).
Tap for more steps...
Step 6.1.4.1
Rewrite 44 as 2222.
y=4±22(-x2-z+4x+4)2-1y=4±22(x2z+4x+4)21
Step 6.1.4.2
Rewrite 44 as 2222.
y=4±22(-x2-z+22x+4)2-1y=4±22(x2z+22x+4)21
y=4±22(-x2-z+22x+4)2-1y=4±22(x2z+22x+4)21
Step 6.1.5
Pull terms out from under the radical.
y=4±2-x2-z+22x+42-1y=4±2x2z+22x+421
Step 6.1.6
Raise 22 to the power of 22.
y=4±2-x2-z+4x+42-1y=4±2x2z+4x+421
y=4±2-x2-z+4x+42-1y=4±2x2z+4x+421
Step 6.2
Multiply 22 by -11.
y=4±2-x2-z+4x+4-2y=4±2x2z+4x+42
Step 6.3
Simplify 4±2-x2-z+4x+4-24±2x2z+4x+42.
y=2±-x2-z+4x+4-1y=2±x2z+4x+41
Step 6.4
Move the negative one from the denominator of 2±-x2-z+4x+4-12±x2z+4x+41.
y=-1(2±-x2-z+4x+4)y=1(2±x2z+4x+4)
Step 6.5
Rewrite -1(2±-x2-z+4x+4)1(2±x2z+4x+4) as -(2±-x2-z+4x+4)(2±x2z+4x+4).
y=-(2±-x2-z+4x+4)y=(2±x2z+4x+4)
Step 6.6
Change the ±± to ++.
y=-(2+-x2-z+4x+4)y=(2+x2z+4x+4)
Step 6.7
Apply the distributive property.
y=-12--x2-z+4x+4y=12x2z+4x+4
Step 6.8
Multiply -11 by 22.
y=-2--x2-z+4x+4y=2x2z+4x+4
y=-2--x2-z+4x+4y=2x2z+4x+4
Step 7
Simplify the expression to solve for the - portion of the ±±.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Factor -44 out of (-4)2-4-1(4x-x2-z)(4)241(4xx2z).
Tap for more steps...
Step 7.1.1.1
Factor -44 out of (-4)2(4)2.
y=4±-4-4-4-1(4x-x2-z)2-1y=4±4441(4xx2z)21
Step 7.1.1.2
Factor -44 out of -4-1(4x-x2-z)41(4xx2z).
y=4±-4-4-4(-1(4x-x2-z))2-1y=4±444(1(4xx2z))21
Step 7.1.1.3
Factor -44 out of -4-4-4(-1(4x-x2-z))444(1(4xx2z)).
y=4±-4(-4-1(4x-x2-z))2-1y=4±4(41(4xx2z))21
y=4±-4(-4-1(4x-x2-z))2-1y=4±4(41(4xx2z))21
Step 7.1.2
Factor -11 out of -4-1(4x-x2-z)41(4xx2z).
Tap for more steps...
Step 7.1.2.1
Reorder the expression.
Tap for more steps...
Step 7.1.2.1.1
Move 4x4x.
y=4±-4(-4-1(-x2-z+4x))2-1y=4±4(41(x2z+4x))21
Step 7.1.2.1.2
Reorder -44 and -1(-x2-z+4x)1(x2z+4x).
y=4±-4(-1(-x2-z+4x)-4)2-1y=4±4(1(x2z+4x)4)21
y=4±-4(-1(-x2-z+4x)-4)2-1y=4±4(1(x2z+4x)4)21
Step 7.1.2.2
Rewrite -44 as -1(4)1(4).
y=4±-4(-1(-x2-z+4x)-14)2-1y=4±4(1(x2z+4x)14)21
Step 7.1.2.3
Factor -11 out of -1(-x2-z+4x)-1(4)1(x2z+4x)1(4).
y=4±-4(-1(-x2-z+4x+4))2-1y=4±4(1(x2z+4x+4))21
Step 7.1.2.4
Rewrite -1(-x2-z+4x+4)1(x2z+4x+4) as -(-x2-z+4x+4)(x2z+4x+4).
y=4±-4(-(-x2-z+4x+4))2-1y=4±4((x2z+4x+4))21
y=4±-4(-1(-x2-z+4x+4))2-1y=4±4(1(x2z+4x+4))21
Step 7.1.3
Combine exponents.
Tap for more steps...
Step 7.1.3.1
Factor out negative.
y=4±-(-4(-x2-z+4x+4))2-1y=4±(4(x2z+4x+4))21
Step 7.1.3.2
Multiply -44 by -11.
y=4±4(-x2-z+4x+4)2-1y=4±4(x2z+4x+4)21
y=4±4(-x2-z+4x+4)2-1y=4±4(x2z+4x+4)21
Step 7.1.4
Rewrite 4(-x2-z+4x+4)4(x2z+4x+4) as 22(-x2-z+22x+4)22(x2z+22x+4).
Tap for more steps...
Step 7.1.4.1
Rewrite 44 as 2222.
y=4±22(-x2-z+4x+4)2-1y=4±22(x2z+4x+4)21
Step 7.1.4.2
Rewrite 44 as 2222.
y=4±22(-x2-z+22x+4)2-1y=4±22(x2z+22x+4)21
y=4±22(-x2-z+22x+4)2-1y=4±22(x2z+22x+4)21
Step 7.1.5
Pull terms out from under the radical.
y=4±2-x2-z+22x+42-1y=4±2x2z+22x+421
Step 7.1.6
Raise 2 to the power of 2.
y=4±2-x2-z+4x+42-1
y=4±2-x2-z+4x+42-1
Step 7.2
Multiply 2 by -1.
y=4±2-x2-z+4x+4-2
Step 7.3
Simplify 4±2-x2-z+4x+4-2.
y=2±-x2-z+4x+4-1
Step 7.4
Move the negative one from the denominator of 2±-x2-z+4x+4-1.
y=-1(2±-x2-z+4x+4)
Step 7.5
Rewrite -1(2±-x2-z+4x+4) as -(2±-x2-z+4x+4).
y=-(2±-x2-z+4x+4)
Step 7.6
Change the ± to -.
y=-(2--x2-z+4x+4)
Step 7.7
Apply the distributive property.
y=-12+-x2-z+4x+4
Step 7.8
Multiply -1 by 2.
y=-2+-x2-z+4x+4
Step 7.9
Multiply ---x2-z+4x+4.
Tap for more steps...
Step 7.9.1
Multiply -1 by -1.
y=-2+1-x2-z+4x+4
Step 7.9.2
Multiply -x2-z+4x+4 by 1.
y=-2+-x2-z+4x+4
y=-2+-x2-z+4x+4
y=-2+-x2-z+4x+4
Step 8
The final answer is the combination of both solutions.
y=-2--x2-z+4x+4
y=-2+-x2-z+4x+4
Step 9
Set the radicand in -x2-z+4x+4 greater than or equal to 0 to find where the expression is defined.
-x2-z+4x+40
Step 10
Solve for x.
Tap for more steps...
Step 10.1
Convert the inequality to an equation.
-x2-z+4x+4=0
Step 10.2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 10.3
Substitute the values a=-1, b=4, and c=-z+4 into the quadratic formula and solve for x.
-4±42-4(-1(-z+4))2-1
Step 10.4
Simplify.
Tap for more steps...
Step 10.4.1
Simplify the numerator.
Tap for more steps...
Step 10.4.1.1
Raise 4 to the power of 2.
x=-4±16-4-1(-z+4)2-1
Step 10.4.1.2
Multiply -4 by -1.
x=-4±16+4(-z+4)2-1
Step 10.4.1.3
Apply the distributive property.
x=-4±16+4(-z)+442-1
Step 10.4.1.4
Multiply -1 by 4.
x=-4±16-4z+442-1
Step 10.4.1.5
Multiply 4 by 4.
x=-4±16-4z+162-1
Step 10.4.1.6
Add 16 and 16.
x=-4±-4z+322-1
Step 10.4.1.7
Factor 4 out of -4z+32.
Tap for more steps...
Step 10.4.1.7.1
Factor 4 out of -4z.
x=-4±4(-z)+322-1
Step 10.4.1.7.2
Factor 4 out of 32.
x=-4±4(-z)+4(8)2-1
Step 10.4.1.7.3
Factor 4 out of 4(-z)+4(8).
x=-4±4(-z+8)2-1
x=-4±4(-z+8)2-1
Step 10.4.1.8
Rewrite 4 as 22.
x=-4±22(-z+8)2-1
Step 10.4.1.9
Pull terms out from under the radical.
x=-4±2-z+82-1
x=-4±2-z+82-1
Step 10.4.2
Multiply 2 by -1.
x=-4±2-z+8-2
Step 10.4.3
Simplify -4±2-z+8-2.
x=2±-z+8
x=2±-z+8
Step 10.5
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 10.5.1
Simplify the numerator.
Tap for more steps...
Step 10.5.1.1
Raise 4 to the power of 2.
x=-4±16-4-1(-z+4)2-1
Step 10.5.1.2
Multiply -4 by -1.
x=-4±16+4(-z+4)2-1
Step 10.5.1.3
Apply the distributive property.
x=-4±16+4(-z)+442-1
Step 10.5.1.4
Multiply -1 by 4.
x=-4±16-4z+442-1
Step 10.5.1.5
Multiply 4 by 4.
x=-4±16-4z+162-1
Step 10.5.1.6
Add 16 and 16.
x=-4±-4z+322-1
Step 10.5.1.7
Factor 4 out of -4z+32.
Tap for more steps...
Step 10.5.1.7.1
Factor 4 out of -4z.
x=-4±4(-z)+322-1
Step 10.5.1.7.2
Factor 4 out of 32.
x=-4±4(-z)+4(8)2-1
Step 10.5.1.7.3
Factor 4 out of 4(-z)+4(8).
x=-4±4(-z+8)2-1
x=-4±4(-z+8)2-1
Step 10.5.1.8
Rewrite 4 as 22.
x=-4±22(-z+8)2-1
Step 10.5.1.9
Pull terms out from under the radical.
x=-4±2-z+82-1
x=-4±2-z+82-1
Step 10.5.2
Multiply 2 by -1.
x=-4±2-z+8-2
Step 10.5.3
Simplify -4±2-z+8-2.
x=2±-z+8
Step 10.5.4
Change the ± to +.
x=2+-z+8
x=2+-z+8
Step 10.6
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 10.6.1
Simplify the numerator.
Tap for more steps...
Step 10.6.1.1
Raise 4 to the power of 2.
x=-4±16-4-1(-z+4)2-1
Step 10.6.1.2
Multiply -4 by -1.
x=-4±16+4(-z+4)2-1
Step 10.6.1.3
Apply the distributive property.
x=-4±16+4(-z)+442-1
Step 10.6.1.4
Multiply -1 by 4.
x=-4±16-4z+442-1
Step 10.6.1.5
Multiply 4 by 4.
x=-4±16-4z+162-1
Step 10.6.1.6
Add 16 and 16.
x=-4±-4z+322-1
Step 10.6.1.7
Factor 4 out of -4z+32.
Tap for more steps...
Step 10.6.1.7.1
Factor 4 out of -4z.
x=-4±4(-z)+322-1
Step 10.6.1.7.2
Factor 4 out of 32.
x=-4±4(-z)+4(8)2-1
Step 10.6.1.7.3
Factor 4 out of 4(-z)+4(8).
x=-4±4(-z+8)2-1
x=-4±4(-z+8)2-1
Step 10.6.1.8
Rewrite 4 as 22.
x=-4±22(-z+8)2-1
Step 10.6.1.9
Pull terms out from under the radical.
x=-4±2-z+82-1
x=-4±2-z+82-1
Step 10.6.2
Multiply 2 by -1.
x=-4±2-z+8-2
Step 10.6.3
Simplify -4±2-z+8-2.
x=2±-z+8
Step 10.6.4
Change the ± to -.
x=2--z+8
x=2--z+8
Step 10.7
Consolidate the solutions.
x=2+-z+8
x=2--z+8
x=2+-z+8
x=2--z+8
Step 11
The domain is all real numbers.
Interval Notation:
(-,)
Set-Builder Notation:
{x|x}
 [x2  12  π  xdx ]