Enter a problem...
Linear Algebra Examples
[109-6-5][109−6−5]
Step 1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 2
Step 2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
10⋅-5-(-6⋅9)10⋅−5−(−6⋅9)
Step 2.2
Simplify the determinant.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 1010 by -5−5.
-50-(-6⋅9)−50−(−6⋅9)
Step 2.2.1.2
Multiply -(-6⋅9)−(−6⋅9).
Step 2.2.1.2.1
Multiply -6−6 by 99.
-50--54−50−−54
Step 2.2.1.2.2
Multiply -1−1 by -54−54.
-50+54−50+54
-50+54−50+54
-50+54−50+54
Step 2.2.2
Add -50−50 and 5454.
44
44
44
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
14[-5-9610]14[−5−9610]
Step 5
Multiply 1414 by each element of the matrix.
[14⋅-514⋅-914⋅614⋅10][14⋅−514⋅−914⋅614⋅10]
Step 6
Step 6.1
Combine 1414 and -5−5.
[-5414⋅-914⋅614⋅10][−5414⋅−914⋅614⋅10]
Step 6.2
Move the negative in front of the fraction.
[-5414⋅-914⋅614⋅10][−5414⋅−914⋅614⋅10]
Step 6.3
Combine 1414 and -9−9.
[-54-9414⋅614⋅10][−54−9414⋅614⋅10]
Step 6.4
Move the negative in front of the fraction.
[-54-9414⋅614⋅10][−54−9414⋅614⋅10]
Step 6.5
Cancel the common factor of 22.
Step 6.5.1
Factor 22 out of 44.
[-54-9412(2)⋅614⋅10]⎡⎣−54−9412(2)⋅614⋅10⎤⎦
Step 6.5.2
Factor 22 out of 66.
[-54-9412⋅2⋅(2⋅3)14⋅10][−54−9412⋅2⋅(2⋅3)14⋅10]
Step 6.5.3
Cancel the common factor.
[-54-9412⋅2⋅(2⋅3)14⋅10]
Step 6.5.4
Rewrite the expression.
[-54-9412⋅314⋅10]
[-54-9412⋅314⋅10]
Step 6.6
Combine 12 and 3.
[-54-943214⋅10]
Step 6.7
Cancel the common factor of 2.
Step 6.7.1
Factor 2 out of 4.
[-54-943212(2)⋅10]
Step 6.7.2
Factor 2 out of 10.
[-54-943212⋅2⋅(2⋅5)]
Step 6.7.3
Cancel the common factor.
[-54-943212⋅2⋅(2⋅5)]
Step 6.7.4
Rewrite the expression.
[-54-943212⋅5]
[-54-943212⋅5]
Step 6.8
Combine 12 and 5.
[-54-943252]
[-54-943252]