Linear Algebra Examples

Find the Inverse [[10,9],[-6,-5]]
[109-6-5][10965]
Step 1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1adbc[dbca] where ad-bcadbc is the determinant.
Step 2
Find the determinant.
Tap for more steps...
Step 2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
10-5-(-69)105(69)
Step 2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply 1010 by -55.
-50-(-69)50(69)
Step 2.2.1.2
Multiply -(-69)(69).
Tap for more steps...
Step 2.2.1.2.1
Multiply -66 by 99.
-50--545054
Step 2.2.1.2.2
Multiply -11 by -5454.
-50+5450+54
-50+5450+54
-50+5450+54
Step 2.2.2
Add -5050 and 5454.
44
44
44
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
14[-5-9610]14[59610]
Step 5
Multiply 1414 by each element of the matrix.
[14-514-91461410][1451491461410]
Step 6
Simplify each element in the matrix.
Tap for more steps...
Step 6.1
Combine 1414 and -55.
[-5414-91461410][541491461410]
Step 6.2
Move the negative in front of the fraction.
[-5414-91461410][541491461410]
Step 6.3
Combine 1414 and -99.
[-54-941461410][54941461410]
Step 6.4
Move the negative in front of the fraction.
[-54-941461410][54941461410]
Step 6.5
Cancel the common factor of 22.
Tap for more steps...
Step 6.5.1
Factor 22 out of 44.
[-54-9412(2)61410]549412(2)61410
Step 6.5.2
Factor 22 out of 66.
[-54-94122(23)1410][5494122(23)1410]
Step 6.5.3
Cancel the common factor.
[-54-94122(23)1410]
Step 6.5.4
Rewrite the expression.
[-54-941231410]
[-54-941231410]
Step 6.6
Combine 12 and 3.
[-54-94321410]
Step 6.7
Cancel the common factor of 2.
Tap for more steps...
Step 6.7.1
Factor 2 out of 4.
[-54-943212(2)10]
Step 6.7.2
Factor 2 out of 10.
[-54-9432122(25)]
Step 6.7.3
Cancel the common factor.
[-54-9432122(25)]
Step 6.7.4
Rewrite the expression.
[-54-9432125]
[-54-9432125]
Step 6.8
Combine 12 and 5.
[-54-943252]
[-54-943252]
 [x2  12  π  xdx ]