Enter a problem...
Linear Algebra Examples
[132110-13800-240002]⎡⎢
⎢
⎢
⎢⎣132110−13800−240002⎤⎥
⎥
⎥
⎥⎦
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI4)
Step 2
The identity matrix or unit matrix of size 4 is the 4×4 square matrix with ones on the main diagonal and zeros elsewhere.
[1000010000100001]
Step 3
Step 3.1
Substitute [132110-13800-240002] for A.
p(λ)=determinant([132110-13800-240002]-λI4)
Step 3.2
Substitute [1000010000100001] for I4.
p(λ)=determinant([132110-13800-240002]-λ[1000010000100001])
p(λ)=determinant([132110-13800-240002]-λ[1000010000100001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([132110-13800-240002]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([132110-13800-240002]+[-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2
Multiply -λ⋅0.
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0.
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ00λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4
Multiply -λ⋅0.
Step 4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ000λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.5
Multiply -λ⋅0.
Step 4.1.2.5.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ0000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.5.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.6
Multiply -1 by 1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.7
Multiply -λ⋅0.
Step 4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.8
Multiply -λ⋅0.
Step 4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ00λ-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.9
Multiply -λ⋅0.
Step 4.1.2.9.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ000λ-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.9.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ000-λ⋅0-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.10
Multiply -λ⋅0.
Step 4.1.2.10.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000λ-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.10.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ⋅1-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.11
Multiply -1 by 1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ-λ⋅0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.12
Multiply -λ⋅0.
Step 4.1.2.12.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ0λ-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.12.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ0-λ⋅0-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.13
Multiply -λ⋅0.
Step 4.1.2.13.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ00λ-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.13.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ00-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.14
Multiply -λ⋅0.
Step 4.1.2.14.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ000λ-λ⋅0-λ⋅1])
Step 4.1.2.14.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ000-λ⋅0-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ000-λ⋅0-λ⋅1])
Step 4.1.2.15
Multiply -λ⋅0.
Step 4.1.2.15.1
Multiply 0 by -1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ0000λ-λ⋅1])
Step 4.1.2.15.2
Multiply 0 by λ.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ0000-λ⋅1])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ0000-λ⋅1])
Step 4.1.2.16
Multiply -1 by 1.
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ0000-λ])
p(λ)=determinant([132110-13800-240002]+[-λ0000-λ0000-λ0000-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[1-λ3+02+011+00+0-1-λ3+08+00+00+0-2-λ4+00+00+00+02-λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 3 and 0.
p(λ)=determinant[1-λ32+011+00+0-1-λ3+08+00+00+0-2-λ4+00+00+00+02-λ]
Step 4.3.2
Add 2 and 0.
p(λ)=determinant[1-λ3211+00+0-1-λ3+08+00+00+0-2-λ4+00+00+00+02-λ]
Step 4.3.3
Add 11 and 0.
p(λ)=determinant[1-λ32110+0-1-λ3+08+00+00+0-2-λ4+00+00+00+02-λ]
Step 4.3.4
Add 0 and 0.
p(λ)=determinant[1-λ32110-1-λ3+08+00+00+0-2-λ4+00+00+00+02-λ]
Step 4.3.5
Add 3 and 0.
p(λ)=determinant[1-λ32110-1-λ38+00+00+0-2-λ4+00+00+00+02-λ]
Step 4.3.6
Add 8 and 0.
p(λ)=determinant[1-λ32110-1-λ380+00+0-2-λ4+00+00+00+02-λ]
Step 4.3.7
Add 0 and 0.
p(λ)=determinant[1-λ32110-1-λ3800+0-2-λ4+00+00+00+02-λ]
Step 4.3.8
Add 0 and 0.
p(λ)=determinant[1-λ32110-1-λ3800-2-λ4+00+00+00+02-λ]
Step 4.3.9
Add 4 and 0.
p(λ)=determinant[1-λ32110-1-λ3800-2-λ40+00+00+02-λ]
Step 4.3.10
Add 0 and 0.
p(λ)=determinant[1-λ32110-1-λ3800-2-λ400+00+02-λ]
Step 4.3.11
Add 0 and 0.
p(λ)=determinant[1-λ32110-1-λ3800-2-λ4000+02-λ]
Step 4.3.12
Add 0 and 0.
p(λ)=determinant[1-λ32110-1-λ3800-2-λ40002-λ]
p(λ)=determinant[1-λ32110-1-λ3800-2-λ40002-λ]
p(λ)=determinant[1-λ32110-1-λ3800-2-λ40002-λ]
Step 5
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
Step 5.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-1-λ380-2-λ4002-λ|
Step 5.1.4
Multiply element a11 by its cofactor.
(1-λ)|-1-λ380-2-λ4002-λ|
Step 5.1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|32110-2-λ4002-λ|
Step 5.1.6
Multiply element a21 by its cofactor.
0|32110-2-λ4002-λ|
Step 5.1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|3211-1-λ38002-λ|
Step 5.1.8
Multiply element a31 by its cofactor.
0|3211-1-λ38002-λ|
Step 5.1.9
The minor for a41 is the determinant with row 4 and column 1 deleted.
|3211-1-λ380-2-λ4|
Step 5.1.10
Multiply element a41 by its cofactor.
0|3211-1-λ380-2-λ4|
Step 5.1.11
Add the terms together.
p(λ)=(1-λ)|-1-λ380-2-λ4002-λ|+0|32110-2-λ4002-λ|+0|3211-1-λ38002-λ|+0|3211-1-λ380-2-λ4|
p(λ)=(1-λ)|-1-λ380-2-λ4002-λ|+0|32110-2-λ4002-λ|+0|3211-1-λ38002-λ|+0|3211-1-λ380-2-λ4|
Step 5.2
Multiply 0 by |32110-2-λ4002-λ|.
p(λ)=(1-λ)|-1-λ380-2-λ4002-λ|+0+0|3211-1-λ38002-λ|+0|3211-1-λ380-2-λ4|
Step 5.3
Multiply 0 by |3211-1-λ38002-λ|.
p(λ)=(1-λ)|-1-λ380-2-λ4002-λ|+0+0+0|3211-1-λ380-2-λ4|
Step 5.4
Multiply 0 by |3211-1-λ380-2-λ4|.
p(λ)=(1-λ)|-1-λ380-2-λ4002-λ|+0+0+0
Step 5.5
Evaluate |-1-λ380-2-λ4002-λ|.
Step 5.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
Step 5.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-2-λ402-λ|
Step 5.5.1.4
Multiply element a11 by its cofactor.
(-1-λ)|-2-λ402-λ|
Step 5.5.1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|3802-λ|
Step 5.5.1.6
Multiply element a21 by its cofactor.
0|3802-λ|
Step 5.5.1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|38-2-λ4|
Step 5.5.1.8
Multiply element a31 by its cofactor.
0|38-2-λ4|
Step 5.5.1.9
Add the terms together.
p(λ)=(1-λ)((-1-λ)|-2-λ402-λ|+0|3802-λ|+0|38-2-λ4|)+0+0+0
p(λ)=(1-λ)((-1-λ)|-2-λ402-λ|+0|3802-λ|+0|38-2-λ4|)+0+0+0
Step 5.5.2
Multiply 0 by |3802-λ|.
p(λ)=(1-λ)((-1-λ)|-2-λ402-λ|+0+0|38-2-λ4|)+0+0+0
Step 5.5.3
Multiply 0 by |38-2-λ4|.
p(λ)=(1-λ)((-1-λ)|-2-λ402-λ|+0+0)+0+0+0
Step 5.5.4
Evaluate |-2-λ402-λ|.
Step 5.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(1-λ)((-1-λ)((-2-λ)(2-λ)+0⋅4)+0+0)+0+0+0
Step 5.5.4.2
Simplify the determinant.
Step 5.5.4.2.1
Simplify each term.
Step 5.5.4.2.1.1
Expand (-2-λ)(2-λ) using the FOIL Method.
Step 5.5.4.2.1.1.1
Apply the distributive property.
p(λ)=(1-λ)((-1-λ)(-2(2-λ)-λ(2-λ)+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.1.2
Apply the distributive property.
p(λ)=(1-λ)((-1-λ)(-2⋅2-2(-λ)-λ(2-λ)+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.1.3
Apply the distributive property.
p(λ)=(1-λ)((-1-λ)(-2⋅2-2(-λ)-λ⋅2-λ(-λ)+0⋅4)+0+0)+0+0+0
p(λ)=(1-λ)((-1-λ)(-2⋅2-2(-λ)-λ⋅2-λ(-λ)+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.2
Simplify and combine like terms.
Step 5.5.4.2.1.2.1
Simplify each term.
Step 5.5.4.2.1.2.1.1
Multiply -2 by 2.
p(λ)=(1-λ)((-1-λ)(-4-2(-λ)-λ⋅2-λ(-λ)+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.2.1.2
Multiply -1 by -2.
p(λ)=(1-λ)((-1-λ)(-4+2λ-λ⋅2-λ(-λ)+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.2.1.3
Multiply 2 by -1.
p(λ)=(1-λ)((-1-λ)(-4+2λ-2λ-λ(-λ)+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=(1-λ)((-1-λ)(-4+2λ-2λ-1⋅-1λ⋅λ+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 5.5.4.2.1.2.1.5.1
Move λ.
p(λ)=(1-λ)((-1-λ)(-4+2λ-2λ-1⋅-1(λ⋅λ)+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=(1-λ)((-1-λ)(-4+2λ-2λ-1⋅-1λ2+0⋅4)+0+0)+0+0+0
p(λ)=(1-λ)((-1-λ)(-4+2λ-2λ-1⋅-1λ2+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.2.1.6
Multiply -1 by -1.
p(λ)=(1-λ)((-1-λ)(-4+2λ-2λ+1λ2+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=(1-λ)((-1-λ)(-4+2λ-2λ+λ2+0⋅4)+0+0)+0+0+0
p(λ)=(1-λ)((-1-λ)(-4+2λ-2λ+λ2+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.2.2
Subtract 2λ from 2λ.
p(λ)=(1-λ)((-1-λ)(-4+0+λ2+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.2.3
Add -4 and 0.
p(λ)=(1-λ)((-1-λ)(-4+λ2+0⋅4)+0+0)+0+0+0
p(λ)=(1-λ)((-1-λ)(-4+λ2+0⋅4)+0+0)+0+0+0
Step 5.5.4.2.1.3
Multiply 0 by 4.
p(λ)=(1-λ)((-1-λ)(-4+λ2+0)+0+0)+0+0+0
p(λ)=(1-λ)((-1-λ)(-4+λ2+0)+0+0)+0+0+0
Step 5.5.4.2.2
Add -4+λ2 and 0.
p(λ)=(1-λ)((-1-λ)(-4+λ2)+0+0)+0+0+0
Step 5.5.4.2.3
Reorder -4 and λ2.
p(λ)=(1-λ)((-1-λ)(λ2-4)+0+0)+0+0+0
p(λ)=(1-λ)((-1-λ)(λ2-4)+0+0)+0+0+0
p(λ)=(1-λ)((-1-λ)(λ2-4)+0+0)+0+0+0
Step 5.5.5
Simplify the determinant.
Step 5.5.5.1
Combine the opposite terms in (-1-λ)(λ2-4)+0+0.
Step 5.5.5.1.1
Add (-1-λ)(λ2-4) and 0.
p(λ)=(1-λ)((-1-λ)(λ2-4)+0)+0+0+0
Step 5.5.5.1.2
Add (-1-λ)(λ2-4) and 0.
p(λ)=(1-λ)((-1-λ)(λ2-4))+0+0+0
p(λ)=(1-λ)((-1-λ)(λ2-4))+0+0+0
Step 5.5.5.2
Expand (-1-λ)(λ2-4) using the FOIL Method.
Step 5.5.5.2.1
Apply the distributive property.
p(λ)=(1-λ)(-1(λ2-4)-λ(λ2-4))+0+0+0
Step 5.5.5.2.2
Apply the distributive property.
p(λ)=(1-λ)(-1λ2-1⋅-4-λ(λ2-4))+0+0+0
Step 5.5.5.2.3
Apply the distributive property.
p(λ)=(1-λ)(-1λ2-1⋅-4-λ⋅λ2-λ⋅-4)+0+0+0
p(λ)=(1-λ)(-1λ2-1⋅-4-λ⋅λ2-λ⋅-4)+0+0+0
Step 5.5.5.3
Simplify each term.
Step 5.5.5.3.1
Rewrite -1λ2 as -λ2.
p(λ)=(1-λ)(-λ2-1⋅-4-λ⋅λ2-λ⋅-4)+0+0+0
Step 5.5.5.3.2
Multiply -1 by -4.
p(λ)=(1-λ)(-λ2+4-λ⋅λ2-λ⋅-4)+0+0+0
Step 5.5.5.3.3
Multiply λ by λ2 by adding the exponents.
Step 5.5.5.3.3.1
Move λ2.
p(λ)=(1-λ)(-λ2+4-(λ2λ)-λ⋅-4)+0+0+0
Step 5.5.5.3.3.2
Multiply λ2 by λ.
Step 5.5.5.3.3.2.1
Raise λ to the power of 1.
p(λ)=(1-λ)(-λ2+4-(λ2λ1)-λ⋅-4)+0+0+0
Step 5.5.5.3.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=(1-λ)(-λ2+4-λ2+1-λ⋅-4)+0+0+0
p(λ)=(1-λ)(-λ2+4-λ2+1-λ⋅-4)+0+0+0
Step 5.5.5.3.3.3
Add 2 and 1.
p(λ)=(1-λ)(-λ2+4-λ3-λ⋅-4)+0+0+0
p(λ)=(1-λ)(-λ2+4-λ3-λ⋅-4)+0+0+0
Step 5.5.5.3.4
Multiply -4 by -1.
p(λ)=(1-λ)(-λ2+4-λ3+4λ)+0+0+0
p(λ)=(1-λ)(-λ2+4-λ3+4λ)+0+0+0
Step 5.5.5.4
Move 4.
p(λ)=(1-λ)(-λ2-λ3+4λ+4)+0+0+0
Step 5.5.5.5
Reorder -λ2 and -λ3.
p(λ)=(1-λ)(-λ3-λ2+4λ+4)+0+0+0
p(λ)=(1-λ)(-λ3-λ2+4λ+4)+0+0+0
p(λ)=(1-λ)(-λ3-λ2+4λ+4)+0+0+0
Step 5.6
Simplify the determinant.
Step 5.6.1
Combine the opposite terms in (1-λ)(-λ3-λ2+4λ+4)+0+0+0.
Step 5.6.1.1
Add (1-λ)(-λ3-λ2+4λ+4) and 0.
p(λ)=(1-λ)(-λ3-λ2+4λ+4)+0+0
Step 5.6.1.2
Add (1-λ)(-λ3-λ2+4λ+4) and 0.
p(λ)=(1-λ)(-λ3-λ2+4λ+4)+0
Step 5.6.1.3
Add (1-λ)(-λ3-λ2+4λ+4) and 0.
p(λ)=(1-λ)(-λ3-λ2+4λ+4)
p(λ)=(1-λ)(-λ3-λ2+4λ+4)
Step 5.6.2
Expand (1-λ)(-λ3-λ2+4λ+4) by multiplying each term in the first expression by each term in the second expression.
p(λ)=1(-λ3)+1(-λ2)+1(4λ)+1⋅4-λ(-λ3)-λ(-λ2)-λ(4λ)-λ⋅4
Step 5.6.3
Combine the opposite terms in 1(-λ3)+1(-λ2)+1(4λ)+1⋅4-λ(-λ3)-λ(-λ2)-λ(4λ)-λ⋅4.
Step 5.6.3.1
Reorder the factors in the terms 1(4λ) and -λ⋅4.
p(λ)=1(-λ3)+1(-λ2)+1⋅4λ+1⋅4-λ(-λ3)-λ(-λ2)-λ(4λ)-1⋅4λ
Step 5.6.3.2
Subtract 4λ from 1⋅4λ.
p(λ)=1(-λ3)+1(-λ2)+1⋅4-λ(-λ3)-λ(-λ2)-λ(4λ)+0
Step 5.6.3.3
Add 1(-λ3)+1(-λ2)+1⋅4-λ(-λ3)-λ(-λ2)-λ(4λ) and 0.
p(λ)=1(-λ3)+1(-λ2)+1⋅4-λ(-λ3)-λ(-λ2)-λ(4λ)
p(λ)=1(-λ3)+1(-λ2)+1⋅4-λ(-λ3)-λ(-λ2)-λ(4λ)
Step 5.6.4
Simplify each term.
Step 5.6.4.1
Multiply -λ3 by 1.
p(λ)=-λ3+1(-λ2)+1⋅4-λ(-λ3)-λ(-λ2)-λ(4λ)
Step 5.6.4.2
Multiply -λ2 by 1.
p(λ)=-λ3-λ2+1⋅4-λ(-λ3)-λ(-λ2)-λ(4λ)
Step 5.6.4.3
Multiply 4 by 1.
p(λ)=-λ3-λ2+4-λ(-λ3)-λ(-λ2)-λ(4λ)
Step 5.6.4.4
Rewrite using the commutative property of multiplication.
p(λ)=-λ3-λ2+4-1⋅-1λ⋅λ3-λ(-λ2)-λ(4λ)
Step 5.6.4.5
Multiply λ by λ3 by adding the exponents.
Step 5.6.4.5.1
Move λ3.
p(λ)=-λ3-λ2+4-1⋅-1(λ3λ)-λ(-λ2)-λ(4λ)
Step 5.6.4.5.2
Multiply λ3 by λ.
Step 5.6.4.5.2.1
Raise λ to the power of 1.
p(λ)=-λ3-λ2+4-1⋅-1(λ3λ1)-λ(-λ2)-λ(4λ)
Step 5.6.4.5.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-λ3-λ2+4-1⋅-1λ3+1-λ(-λ2)-λ(4λ)
p(λ)=-λ3-λ2+4-1⋅-1λ3+1-λ(-λ2)-λ(4λ)
Step 5.6.4.5.3
Add 3 and 1.
p(λ)=-λ3-λ2+4-1⋅-1λ4-λ(-λ2)-λ(4λ)
p(λ)=-λ3-λ2+4-1⋅-1λ4-λ(-λ2)-λ(4λ)
Step 5.6.4.6
Multiply -1 by -1.
p(λ)=-λ3-λ2+4+1λ4-λ(-λ2)-λ(4λ)
Step 5.6.4.7
Multiply λ4 by 1.
p(λ)=-λ3-λ2+4+λ4-λ(-λ2)-λ(4λ)
Step 5.6.4.8
Rewrite using the commutative property of multiplication.
p(λ)=-λ3-λ2+4+λ4-1⋅-1λ⋅λ2-λ(4λ)
Step 5.6.4.9
Multiply λ by λ2 by adding the exponents.
Step 5.6.4.9.1
Move λ2.
p(λ)=-λ3-λ2+4+λ4-1⋅-1(λ2λ)-λ(4λ)
Step 5.6.4.9.2
Multiply λ2 by λ.
Step 5.6.4.9.2.1
Raise λ to the power of 1.
p(λ)=-λ3-λ2+4+λ4-1⋅-1(λ2λ1)-λ(4λ)
Step 5.6.4.9.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-λ3-λ2+4+λ4-1⋅-1λ2+1-λ(4λ)
p(λ)=-λ3-λ2+4+λ4-1⋅-1λ2+1-λ(4λ)
Step 5.6.4.9.3
Add 2 and 1.
p(λ)=-λ3-λ2+4+λ4-1⋅-1λ3-λ(4λ)
p(λ)=-λ3-λ2+4+λ4-1⋅-1λ3-λ(4λ)
Step 5.6.4.10
Multiply -1 by -1.
p(λ)=-λ3-λ2+4+λ4+1λ3-λ(4λ)
Step 5.6.4.11
Multiply λ3 by 1.
p(λ)=-λ3-λ2+4+λ4+λ3-λ(4λ)
Step 5.6.4.12
Rewrite using the commutative property of multiplication.
p(λ)=-λ3-λ2+4+λ4+λ3-1⋅4λ⋅λ
Step 5.6.4.13
Multiply λ by λ by adding the exponents.
Step 5.6.4.13.1
Move λ.
p(λ)=-λ3-λ2+4+λ4+λ3-1⋅4(λ⋅λ)
Step 5.6.4.13.2
Multiply λ by λ.
p(λ)=-λ3-λ2+4+λ4+λ3-1⋅4λ2
p(λ)=-λ3-λ2+4+λ4+λ3-1⋅4λ2
Step 5.6.4.14
Multiply -1 by 4.
p(λ)=-λ3-λ2+4+λ4+λ3-4λ2
p(λ)=-λ3-λ2+4+λ4+λ3-4λ2
Step 5.6.5
Combine the opposite terms in -λ3-λ2+4+λ4+λ3-4λ2.
Step 5.6.5.1
Add -λ3 and λ3.
p(λ)=-λ2+4+λ4+0-4λ2
Step 5.6.5.2
Add -λ2+4+λ4 and 0.
p(λ)=-λ2+4+λ4-4λ2
p(λ)=-λ2+4+λ4-4λ2
Step 5.6.6
Subtract 4λ2 from -λ2.
p(λ)=-5λ2+4+λ4
Step 5.6.7
Move 4.
p(λ)=-5λ2+λ4+4
Step 5.6.8
Reorder -5λ2 and λ4.
p(λ)=λ4-5λ2+4
p(λ)=λ4-5λ2+4
p(λ)=λ4-5λ2+4
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ4-5λ2+4=0
Step 7
Step 7.1
Substitute u=λ2 into the equation. This will make the quadratic formula easy to use.
u2-5u+4=0
u=λ2
Step 7.2
Factor u2-5u+4 using the AC method.
Step 7.2.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 4 and whose sum is -5.
-4,-1
Step 7.2.2
Write the factored form using these integers.
(u-4)(u-1)=0
(u-4)(u-1)=0
Step 7.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
u-4=0
u-1=0
Step 7.4
Set u-4 equal to 0 and solve for u.
Step 7.4.1
Set u-4 equal to 0.
u-4=0
Step 7.4.2
Add 4 to both sides of the equation.
u=4
u=4
Step 7.5
Set u-1 equal to 0 and solve for u.
Step 7.5.1
Set u-1 equal to 0.
u-1=0
Step 7.5.2
Add 1 to both sides of the equation.
u=1
u=1
Step 7.6
The final solution is all the values that make (u-4)(u-1)=0 true.
u=4,1
Step 7.7
Substitute the real value of u=λ2 back into the solved equation.
λ2=4
(λ2)1=1
Step 7.8
Solve the first equation for λ.
λ2=4
Step 7.9
Solve the equation for λ.
Step 7.9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
λ=±√4
Step 7.9.2
Simplify ±√4.
Step 7.9.2.1
Rewrite 4 as 22.
λ=±√22
Step 7.9.2.2
Pull terms out from under the radical, assuming positive real numbers.
λ=±2
λ=±2
Step 7.9.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 7.9.3.1
First, use the positive value of the ± to find the first solution.
λ=2
Step 7.9.3.2
Next, use the negative value of the ± to find the second solution.
λ=-2
Step 7.9.3.3
The complete solution is the result of both the positive and negative portions of the solution.
λ=2,-2
λ=2,-2
λ=2,-2
Step 7.10
Solve the second equation for λ.
(λ2)1=1
Step 7.11
Solve the equation for λ.
Step 7.11.1
Remove parentheses.
λ2=1
Step 7.11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
λ=±√1
Step 7.11.3
Any root of 1 is 1.
λ=±1
Step 7.11.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 7.11.4.1
First, use the positive value of the ± to find the first solution.
λ=1
Step 7.11.4.2
Next, use the negative value of the ± to find the second solution.
λ=-1
Step 7.11.4.3
The complete solution is the result of both the positive and negative portions of the solution.
λ=1,-1
λ=1,-1
λ=1,-1
Step 7.12
The solution to λ4-5λ2+4=0 is λ=2,-2,1,-1.
λ=2,-2,1,-1
λ=2,-2,1,-1