Enter a problem...
Linear Algebra Examples
y=3x+2y=3x+2 , x-4y=9x−4y=9
Step 1
Subtract 3x3x from both sides of the equation.
y-3x=2,x-4y=9y−3x=2,x−4y=9
Step 2
To find the intersection of the line through a point (p,q,r)(p,q,r) perpendicular to plane P1P1 ax+by+cz=dax+by+cz=d and plane P2P2 ex+fy+gz=hex+fy+gz=h:
1. Find the normal vectors of plane P1P1 and plane P2P2 where the normal vectors are n1=⟨a,b,c⟩n1=⟨a,b,c⟩ and n2=⟨e,f,g⟩n2=⟨e,f,g⟩. Check to see if the dot product is 0.
2. Create a set of parametric equations such that x=p+atx=p+at, y=q+bty=q+bt, and z=r+ctz=r+ct.
3. Substitute these equations into the equation for plane P2P2 such that e(p+at)+f(q+bt)+g(r+ct)=he(p+at)+f(q+bt)+g(r+ct)=h and solve for tt.
4. Using the value of tt, solve the parametric equations x=p+atx=p+at, y=q+bty=q+bt, and z=r+ctz=r+ct for tt to find the intersection (x,y,z)(x,y,z).
Step 3
Step 3.1
P1P1 is y-3x=2y−3x=2. Find the normal vector n1=⟨a,b,c⟩n1=⟨a,b,c⟩ from the plane equation of the form ax+by+cz=dax+by+cz=d.
n1=⟨-3,1,0⟩n1=⟨−3,1,0⟩
Step 3.2
P2P2 is x-4y=9x−4y=9. Find the normal vector n2=⟨e,f,g⟩n2=⟨e,f,g⟩ from the plane equation of the form ex+fy+gz=hex+fy+gz=h.
n2=⟨1,-4,0⟩n2=⟨1,−4,0⟩
Step 3.3
Calculate the dot product of n1n1 and n2n2 by summing the products of the corresponding xx, yy, and zz values in the normal vectors.
-3⋅1+1⋅-4+0⋅0−3⋅1+1⋅−4+0⋅0
Step 3.4
Simplify the dot product.
Step 3.4.1
Remove parentheses.
-3⋅1+1⋅-4+0⋅0−3⋅1+1⋅−4+0⋅0
Step 3.4.2
Simplify each term.
Step 3.4.2.1
Multiply -3−3 by 11.
-3+1⋅-4+0⋅0−3+1⋅−4+0⋅0
Step 3.4.2.2
Multiply -4−4 by 11.
-3-4+0⋅0−3−4+0⋅0
Step 3.4.2.3
Multiply 00 by 00.
-3-4+0−3−4+0
-3-4+0−3−4+0
Step 3.4.3
Simplify by adding and subtracting.
Step 3.4.3.1
Subtract 44 from -3−3.
-7+0−7+0
Step 3.4.3.2
Add -7−7 and 00.
-7−7
-7−7
-7−7
-7−7
Step 4
Next, build a set of parametric equations x=p+atx=p+at,y=q+bty=q+bt, and z=r+ctz=r+ct using the origin (0,0,0)(0,0,0) for the point (p,q,r)(p,q,r) and the values from the normal vector -7−7 for the values of aa, bb, and cc. This set of parametric equations represents the line through the origin that is perpendicular to P1P1 y-3x=2y−3x=2.
x=0+-3⋅tx=0+−3⋅t
y=0+1⋅ty=0+1⋅t
z=0+0⋅tz=0+0⋅t
Step 5
Substitute the expression for xx, yy, and zz into the equation for P2P2 x-4y=9x−4y=9.
(0-3⋅t)-4(0+1⋅t)=9(0−3⋅t)−4(0+1⋅t)=9
Step 6
Step 6.1
Simplify (0-3⋅t)-4(0+1⋅t)(0−3⋅t)−4(0+1⋅t).
Step 6.1.1
Combine the opposite terms in (0-3⋅t)-4(0+1⋅t)(0−3⋅t)−4(0+1⋅t).
Step 6.1.1.1
Subtract 3⋅t3⋅t from 00.
-3⋅t-4(0+1⋅t)=9−3⋅t−4(0+1⋅t)=9
Step 6.1.1.2
Add 00 and 1⋅t1⋅t.
-3⋅t-4(1⋅t)=9−3⋅t−4(1⋅t)=9
-3⋅t-4(1⋅t)=9−3⋅t−4(1⋅t)=9
Step 6.1.2
Multiply tt by 11.
-3t-4t=9−3t−4t=9
Step 6.1.3
Subtract 4t4t from -3t−3t.
-7t=9−7t=9
-7t=9−7t=9
Step 6.2
Divide each term in -7t=9−7t=9 by -7−7 and simplify.
Step 6.2.1
Divide each term in -7t=9−7t=9 by -7−7.
-7t-7=9-7−7t−7=9−7
Step 6.2.2
Simplify the left side.
Step 6.2.2.1
Cancel the common factor of -7−7.
Step 6.2.2.1.1
Cancel the common factor.
-7t-7=9-7
Step 6.2.2.1.2
Divide t by 1.
t=9-7
t=9-7
t=9-7
Step 6.2.3
Simplify the right side.
Step 6.2.3.1
Move the negative in front of the fraction.
t=-97
t=-97
t=-97
t=-97
Step 7
Step 7.1
Solve the equation for x.
Step 7.1.1
Remove parentheses.
x=0-3⋅(-1(97))
Step 7.1.2
Remove parentheses.
x=0-3⋅(-97)
Step 7.1.3
Simplify 0-3⋅(-97).
Step 7.1.3.1
Multiply -3(-97).
Step 7.1.3.1.1
Multiply -1 by -3.
x=0+3(97)
Step 7.1.3.1.2
Combine 3 and 97.
x=0+3⋅97
Step 7.1.3.1.3
Multiply 3 by 9.
x=0+277
x=0+277
Step 7.1.3.2
Add 0 and 277.
x=277
x=277
x=277
Step 7.2
Solve the equation for y.
Step 7.2.1
Remove parentheses.
y=0+1⋅(-1(97))
Step 7.2.2
Remove parentheses.
y=0+1⋅(-97)
Step 7.2.3
Simplify 0+1⋅(-97).
Step 7.2.3.1
Multiply -97 by 1.
y=0-97
Step 7.2.3.2
Subtract 97 from 0.
y=-97
y=-97
y=-97
Step 7.3
Solve the equation for z.
Step 7.3.1
Remove parentheses.
z=0+0⋅(-1(97))
Step 7.3.2
Remove parentheses.
z=0+0⋅(-97)
Step 7.3.3
Simplify 0+0⋅(-97).
Step 7.3.3.1
Multiply 0(-97).
Step 7.3.3.1.1
Multiply -1 by 0.
z=0+0(97)
Step 7.3.3.1.2
Multiply 0 by 97.
z=0+0
z=0+0
Step 7.3.3.2
Add 0 and 0.
z=0
z=0
z=0
Step 7.4
The solved parametric equations for x, y, and z.
x=277
y=-97
z=0
x=277
y=-97
z=0
Step 8
Using the values calculated for x, y, and z, the intersection point is found to be (277,-97,0).
(277,-97,0)