Enter a problem...
Linear Algebra Examples
2x+8y=-62x+8y=−6
Step 1
Subtract 2x from both sides of the equation.
8y=-6-2x
Step 2
Step 2.1
Divide each term in 8y=-6-2x by 8.
8y8=-68+-2x8
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 8.
Step 2.2.1.1
Cancel the common factor.
8y8=-68+-2x8
Step 2.2.1.2
Divide y by 1.
y=-68+-2x8
y=-68+-2x8
y=-68+-2x8
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Cancel the common factor of -6 and 8.
Step 2.3.1.1.1
Factor 2 out of -6.
y=2(-3)8+-2x8
Step 2.3.1.1.2
Cancel the common factors.
Step 2.3.1.1.2.1
Factor 2 out of 8.
y=2⋅-32⋅4+-2x8
Step 2.3.1.1.2.2
Cancel the common factor.
y=2⋅-32⋅4+-2x8
Step 2.3.1.1.2.3
Rewrite the expression.
y=-34+-2x8
y=-34+-2x8
y=-34+-2x8
Step 2.3.1.2
Move the negative in front of the fraction.
y=-34+-2x8
Step 2.3.1.3
Cancel the common factor of -2 and 8.
Step 2.3.1.3.1
Factor 2 out of -2x.
y=-34+2(-x)8
Step 2.3.1.3.2
Cancel the common factors.
Step 2.3.1.3.2.1
Factor 2 out of 8.
y=-34+2(-x)2(4)
Step 2.3.1.3.2.2
Cancel the common factor.
y=-34+2(-x)2⋅4
Step 2.3.1.3.2.3
Rewrite the expression.
y=-34+-x4
y=-34+-x4
y=-34+-x4
Step 2.3.1.4
Move the negative in front of the fraction.
y=-34-x4
y=-34-x4
y=-34-x4
y=-34-x4
Step 3
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(-∞,∞)
Set-Builder Notation:
{x|x∈ℝ}
Step 4