Linear Algebra Examples

Find the Inverse [[a,b],[c,d]]
[abcd]
Step 1
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
Step 2
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
ad-cb
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
1ad-cb[d-b-ca]
Step 5
Multiply 1ad-cb by each element of the matrix.
[1ad-cbd1ad-cb(-b)1ad-cb(-c)1ad-cba]
Step 6
Simplify each element in the matrix.
Tap for more steps...
Step 6.1
Combine 1ad-cb and d.
[dad-cb1ad-cb(-b)1ad-cb(-c)1ad-cba]
Step 6.2
Rewrite using the commutative property of multiplication.
[dad-cb-1ad-cbb1ad-cb(-c)1ad-cba]
Step 6.3
Combine b and 1ad-cb.
[dad-cb-bad-cb1ad-cb(-c)1ad-cba]
Step 6.4
Rewrite using the commutative property of multiplication.
[dad-cb-bad-cb-1ad-cbc1ad-cba]
Step 6.5
Combine c and 1ad-cb.
[dad-cb-bad-cb-cad-cb1ad-cba]
Step 6.6
Combine 1ad-cb and a.
[dad-cb-bad-cb-cad-cbaad-cb]
[dad-cb-bad-cb-cad-cbaad-cb]
 [x2  12  π  xdx ]