Linear Algebra Examples

Find the Inverse [[7,8],[2/3,1/3]]
[782313][782313]
Step 1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1adbc[dbca] where ad-bcadbc is the determinant.
Step 2
Find the determinant.
Tap for more steps...
Step 2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
7(13)-2387(13)238
Step 2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Combine 77 and 1313.
73-23873238
Step 2.2.1.2
Multiply -238238.
Tap for more steps...
Step 2.2.1.2.1
Multiply 88 by -11.
73-8(23)738(23)
Step 2.2.1.2.2
Combine -88 and 2323.
73+-82373+823
Step 2.2.1.2.3
Multiply -88 by 22.
73+-16373+163
73+-16373+163
Step 2.2.1.3
Move the negative in front of the fraction.
73-16373163
73-16373163
Step 2.2.2
Combine the numerators over the common denominator.
7-1637163
Step 2.2.3
Subtract 1616 from 77.
-9393
Step 2.2.4
Divide -99 by 33.
-33
-33
-33
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
1-3[13-8-237]13[138237]
Step 5
Move the negative in front of the fraction.
-13[13-8-237]13[138237]
Step 6
Multiply -1313 by each element of the matrix.
[-1313-13-8-13(-23)-137]131313813(23)137
Step 7
Simplify each element in the matrix.
Tap for more steps...
Step 7.1
Multiply -13131313.
Tap for more steps...
Step 7.1.1
Multiply 1313 by 1313.
[-133-13-8-13(-23)-137]13313813(23)137
Step 7.1.2
Multiply 33 by 33.
[-19-13-8-13(-23)-137]1913813(23)137
[-19-13-8-13(-23)-137]1913813(23)137
Step 7.2
Multiply -13-8.
Tap for more steps...
Step 7.2.1
Multiply -8 by -1.
[-198(13)-13(-23)-137]
Step 7.2.2
Combine 8 and 13.
[-1983-13(-23)-137]
[-1983-13(-23)-137]
Step 7.3
Multiply -13(-23).
Tap for more steps...
Step 7.3.1
Multiply -1 by -1.
[-19831(13)23-137]
Step 7.3.2
Multiply 13 by 1.
[-19831323-137]
Step 7.3.3
Multiply 13 by 23.
[-1983233-137]
Step 7.3.4
Multiply 3 by 3.
[-198329-137]
[-198329-137]
Step 7.4
Multiply -137.
Tap for more steps...
Step 7.4.1
Multiply 7 by -1.
[-198329-7(13)]
Step 7.4.2
Combine -7 and 13.
[-198329-73]
[-198329-73]
Step 7.5
Move the negative in front of the fraction.
[-198329-73]
[-198329-73]
 [x2  12  π  xdx ]