Enter a problem...
Linear Algebra Examples
[782313][782313]
Step 1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 2
Step 2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
7(13)-23⋅87(13)−23⋅8
Step 2.2
Simplify the determinant.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Combine 77 and 1313.
73-23⋅873−23⋅8
Step 2.2.1.2
Multiply -23⋅8−23⋅8.
Step 2.2.1.2.1
Multiply 88 by -1−1.
73-8(23)73−8(23)
Step 2.2.1.2.2
Combine -8−8 and 2323.
73+-8⋅2373+−8⋅23
Step 2.2.1.2.3
Multiply -8−8 by 22.
73+-16373+−163
73+-16373+−163
Step 2.2.1.3
Move the negative in front of the fraction.
73-16373−163
73-16373−163
Step 2.2.2
Combine the numerators over the common denominator.
7-1637−163
Step 2.2.3
Subtract 1616 from 77.
-93−93
Step 2.2.4
Divide -9−9 by 33.
-3−3
-3−3
-3−3
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
1-3[13-8-237]1−3[13−8−237]
Step 5
Move the negative in front of the fraction.
-13[13-8-237]−13[13−8−237]
Step 6
Multiply -13−13 by each element of the matrix.
[-13⋅13-13⋅-8-13(-23)-13⋅7]⎡⎢⎣−13⋅13−13⋅−8−13(−23)−13⋅7⎤⎥⎦
Step 7
Step 7.1
Multiply -13⋅13−13⋅13.
Step 7.1.1
Multiply 1313 by 1313.
[-13⋅3-13⋅-8-13(-23)-13⋅7]⎡⎢⎣−13⋅3−13⋅−8−13(−23)−13⋅7⎤⎥⎦
Step 7.1.2
Multiply 33 by 33.
[-19-13⋅-8-13(-23)-13⋅7]⎡⎢⎣−19−13⋅−8−13(−23)−13⋅7⎤⎥⎦
[-19-13⋅-8-13(-23)-13⋅7]⎡⎢⎣−19−13⋅−8−13(−23)−13⋅7⎤⎥⎦
Step 7.2
Multiply -13⋅-8.
Step 7.2.1
Multiply -8 by -1.
[-198(13)-13(-23)-13⋅7]
Step 7.2.2
Combine 8 and 13.
[-1983-13(-23)-13⋅7]
[-1983-13(-23)-13⋅7]
Step 7.3
Multiply -13(-23).
Step 7.3.1
Multiply -1 by -1.
[-19831(13)23-13⋅7]
Step 7.3.2
Multiply 13 by 1.
[-198313⋅23-13⋅7]
Step 7.3.3
Multiply 13 by 23.
[-198323⋅3-13⋅7]
Step 7.3.4
Multiply 3 by 3.
[-198329-13⋅7]
[-198329-13⋅7]
Step 7.4
Multiply -13⋅7.
Step 7.4.1
Multiply 7 by -1.
[-198329-7(13)]
Step 7.4.2
Combine -7 and 13.
[-198329-73]
[-198329-73]
Step 7.5
Move the negative in front of the fraction.
[-198329-73]
[-198329-73]