Linear Algebra Examples

Find the Inverse [[3,-9],[-2,5]]
[3-9-25][3925]
Step 1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1adbc[dbca] where ad-bcadbc is the determinant.
Step 2
Find the determinant.
Tap for more steps...
Step 2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
35-(-2-9)35(29)
Step 2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply 33 by 55.
15-(-2-9)15(29)
Step 2.2.1.2
Multiply -(-2-9)(29).
Tap for more steps...
Step 2.2.1.2.1
Multiply -22 by -99.
15-11815118
Step 2.2.1.2.2
Multiply -11 by 1818.
15-181518
15-181518
15-181518
Step 2.2.2
Subtract 1818 from 1515.
-33
-33
-33
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
1-3[5923]13[5923]
Step 5
Move the negative in front of the fraction.
-13[5923]13[5923]
Step 6
Multiply -1313 by each element of the matrix.
[-135-139-132-133][135139132133]
Step 7
Simplify each element in the matrix.
Tap for more steps...
Step 7.1
Multiply -135135.
Tap for more steps...
Step 7.1.1
Multiply 55 by -11.
[-5(13)-139-132-133]5(13)139132133
Step 7.1.2
Combine -55 and 1313.
[-53-139-132-133][53139132133]
[-53-139-132-133][53139132133]
Step 7.2
Move the negative in front of the fraction.
[-53-139-132-133][53139132133]
Step 7.3
Cancel the common factor of 33.
Tap for more steps...
Step 7.3.1
Move the leading negative in -1313 into the numerator.
[-53-139-132-133][53139132133]
Step 7.3.2
Factor 33 out of 99.
[-53-13(3(3))-132-133][5313(3(3))132133]
Step 7.3.3
Cancel the common factor.
[-53-13(33)-132-133]
Step 7.3.4
Rewrite the expression.
[-53-13-132-133]
[-53-13-132-133]
Step 7.4
Multiply -1 by 3.
[-53-3-132-133]
Step 7.5
Multiply -132.
Tap for more steps...
Step 7.5.1
Multiply 2 by -1.
[-53-3-2(13)-133]
Step 7.5.2
Combine -2 and 13.
[-53-3-23-133]
[-53-3-23-133]
Step 7.6
Move the negative in front of the fraction.
[-53-3-23-133]
Step 7.7
Cancel the common factor of 3.
Tap for more steps...
Step 7.7.1
Move the leading negative in -13 into the numerator.
[-53-3-23-133]
Step 7.7.2
Cancel the common factor.
[-53-3-23-133]
Step 7.7.3
Rewrite the expression.
[-53-3-23-1]
[-53-3-23-1]
[-53-3-23-1]
 [x2  12  π  xdx ]