Enter a problem...
Linear Algebra Examples
[3-9-25][3−9−25]
Step 1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 2
Step 2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
3⋅5-(-2⋅-9)3⋅5−(−2⋅−9)
Step 2.2
Simplify the determinant.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 33 by 55.
15-(-2⋅-9)15−(−2⋅−9)
Step 2.2.1.2
Multiply -(-2⋅-9)−(−2⋅−9).
Step 2.2.1.2.1
Multiply -2−2 by -9−9.
15-1⋅1815−1⋅18
Step 2.2.1.2.2
Multiply -1−1 by 1818.
15-1815−18
15-1815−18
15-1815−18
Step 2.2.2
Subtract 1818 from 1515.
-3−3
-3−3
-3−3
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
1-3[5923]1−3[5923]
Step 5
Move the negative in front of the fraction.
-13[5923]−13[5923]
Step 6
Multiply -13−13 by each element of the matrix.
[-13⋅5-13⋅9-13⋅2-13⋅3][−13⋅5−13⋅9−13⋅2−13⋅3]
Step 7
Step 7.1
Multiply -13⋅5−13⋅5.
Step 7.1.1
Multiply 55 by -1−1.
[-5(13)-13⋅9-13⋅2-13⋅3]⎡⎢⎣−5(13)−13⋅9−13⋅2−13⋅3⎤⎥⎦
Step 7.1.2
Combine -5−5 and 1313.
[-53-13⋅9-13⋅2-13⋅3][−53−13⋅9−13⋅2−13⋅3]
[-53-13⋅9-13⋅2-13⋅3][−53−13⋅9−13⋅2−13⋅3]
Step 7.2
Move the negative in front of the fraction.
[-53-13⋅9-13⋅2-13⋅3][−53−13⋅9−13⋅2−13⋅3]
Step 7.3
Cancel the common factor of 33.
Step 7.3.1
Move the leading negative in -13−13 into the numerator.
[-53-13⋅9-13⋅2-13⋅3][−53−13⋅9−13⋅2−13⋅3]
Step 7.3.2
Factor 33 out of 99.
[-53-13⋅(3(3))-13⋅2-13⋅3][−53−13⋅(3(3))−13⋅2−13⋅3]
Step 7.3.3
Cancel the common factor.
[-53-13⋅(3⋅3)-13⋅2-13⋅3]
Step 7.3.4
Rewrite the expression.
[-53-1⋅3-13⋅2-13⋅3]
[-53-1⋅3-13⋅2-13⋅3]
Step 7.4
Multiply -1 by 3.
[-53-3-13⋅2-13⋅3]
Step 7.5
Multiply -13⋅2.
Step 7.5.1
Multiply 2 by -1.
[-53-3-2(13)-13⋅3]
Step 7.5.2
Combine -2 and 13.
[-53-3-23-13⋅3]
[-53-3-23-13⋅3]
Step 7.6
Move the negative in front of the fraction.
[-53-3-23-13⋅3]
Step 7.7
Cancel the common factor of 3.
Step 7.7.1
Move the leading negative in -13 into the numerator.
[-53-3-23-13⋅3]
Step 7.7.2
Cancel the common factor.
[-53-3-23-13⋅3]
Step 7.7.3
Rewrite the expression.
[-53-3-23-1]
[-53-3-23-1]
[-53-3-23-1]