Enter a problem...
Linear Algebra Examples
A=[-3-3i1-3i-3+i2+4i]
Step 1
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
Step 2
Step 2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
(-3-3i)(2+4i)-(-3+i)(1-3i)
Step 2.2
Simplify the determinant.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Expand (-3-3i)(2+4i) using the FOIL Method.
Step 2.2.1.1.1
Apply the distributive property.
-3(2+4i)-3i(2+4i)-(-3+i)(1-3i)
Step 2.2.1.1.2
Apply the distributive property.
-3⋅2-3(4i)-3i(2+4i)-(-3+i)(1-3i)
Step 2.2.1.1.3
Apply the distributive property.
-3⋅2-3(4i)-3i⋅2-3i(4i)-(-3+i)(1-3i)
-3⋅2-3(4i)-3i⋅2-3i(4i)-(-3+i)(1-3i)
Step 2.2.1.2
Simplify and combine like terms.
Step 2.2.1.2.1
Simplify each term.
Step 2.2.1.2.1.1
Multiply -3 by 2.
-6-3(4i)-3i⋅2-3i(4i)-(-3+i)(1-3i)
Step 2.2.1.2.1.2
Multiply 4 by -3.
-6-12i-3i⋅2-3i(4i)-(-3+i)(1-3i)
Step 2.2.1.2.1.3
Multiply 2 by -3.
-6-12i-6i-3i(4i)-(-3+i)(1-3i)
Step 2.2.1.2.1.4
Multiply -3i(4i).
Step 2.2.1.2.1.4.1
Multiply 4 by -3.
-6-12i-6i-12ii-(-3+i)(1-3i)
Step 2.2.1.2.1.4.2
Raise i to the power of 1.
-6-12i-6i-12(i1i)-(-3+i)(1-3i)
Step 2.2.1.2.1.4.3
Raise i to the power of 1.
-6-12i-6i-12(i1i1)-(-3+i)(1-3i)
Step 2.2.1.2.1.4.4
Use the power rule aman=am+n to combine exponents.
-6-12i-6i-12i1+1-(-3+i)(1-3i)
Step 2.2.1.2.1.4.5
Add 1 and 1.
-6-12i-6i-12i2-(-3+i)(1-3i)
-6-12i-6i-12i2-(-3+i)(1-3i)
Step 2.2.1.2.1.5
Rewrite i2 as -1.
-6-12i-6i-12⋅-1-(-3+i)(1-3i)
Step 2.2.1.2.1.6
Multiply -12 by -1.
-6-12i-6i+12-(-3+i)(1-3i)
-6-12i-6i+12-(-3+i)(1-3i)
Step 2.2.1.2.2
Add -6 and 12.
6-12i-6i-(-3+i)(1-3i)
Step 2.2.1.2.3
Subtract 6i from -12i.
6-18i-(-3+i)(1-3i)
6-18i-(-3+i)(1-3i)
Step 2.2.1.3
Apply the distributive property.
6-18i+(--3-i)(1-3i)
Step 2.2.1.4
Multiply -1 by -3.
6-18i+(3-i)(1-3i)
Step 2.2.1.5
Expand (3-i)(1-3i) using the FOIL Method.
Step 2.2.1.5.1
Apply the distributive property.
6-18i+3(1-3i)-i(1-3i)
Step 2.2.1.5.2
Apply the distributive property.
6-18i+3⋅1+3(-3i)-i(1-3i)
Step 2.2.1.5.3
Apply the distributive property.
6-18i+3⋅1+3(-3i)-i⋅1-i(-3i)
6-18i+3⋅1+3(-3i)-i⋅1-i(-3i)
Step 2.2.1.6
Simplify and combine like terms.
Step 2.2.1.6.1
Simplify each term.
Step 2.2.1.6.1.1
Multiply 3 by 1.
6-18i+3+3(-3i)-i⋅1-i(-3i)
Step 2.2.1.6.1.2
Multiply -3 by 3.
6-18i+3-9i-i⋅1-i(-3i)
Step 2.2.1.6.1.3
Multiply -1 by 1.
6-18i+3-9i-i-i(-3i)
Step 2.2.1.6.1.4
Multiply -i(-3i).
Step 2.2.1.6.1.4.1
Multiply -3 by -1.
6-18i+3-9i-i+3ii
Step 2.2.1.6.1.4.2
Raise i to the power of 1.
6-18i+3-9i-i+3(i1i)
Step 2.2.1.6.1.4.3
Raise i to the power of 1.
6-18i+3-9i-i+3(i1i1)
Step 2.2.1.6.1.4.4
Use the power rule aman=am+n to combine exponents.
6-18i+3-9i-i+3i1+1
Step 2.2.1.6.1.4.5
Add 1 and 1.
6-18i+3-9i-i+3i2
6-18i+3-9i-i+3i2
Step 2.2.1.6.1.5
Rewrite i2 as -1.
6-18i+3-9i-i+3⋅-1
Step 2.2.1.6.1.6
Multiply 3 by -1.
6-18i+3-9i-i-3
6-18i+3-9i-i-3
Step 2.2.1.6.2
Subtract 3 from 3.
6-18i+0-9i-i
Step 2.2.1.6.3
Subtract 9i from 0.
6-18i-9i-i
Step 2.2.1.6.4
Subtract i from -9i.
6-18i-10i
6-18i-10i
6-18i-10i
Step 2.2.2
Subtract 10i from -18i.
6-28i
6-28i
6-28i
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
16-28i[2+4i-(1-3i)-(-3+i)-3-3i]
Step 5
Multiply the numerator and denominator of 16-28i by the conjugate of 6-28i to make the denominator real.
16-28i⋅6+28i6+28i[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6
Step 6.1
Combine.
1(6+28i)(6-28i)(6+28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.2
Multiply 6+28i by 1.
6+28i(6-28i)(6+28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3
Simplify the denominator.
Step 6.3.1
Expand (6-28i)(6+28i) using the FOIL Method.
Step 6.3.1.1
Apply the distributive property.
6+28i6(6+28i)-28i(6+28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.1.2
Apply the distributive property.
6+28i6⋅6+6(28i)-28i(6+28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.1.3
Apply the distributive property.
6+28i6⋅6+6(28i)-28i⋅6-28i(28i)[2+4i-(1-3i)-(-3+i)-3-3i]
6+28i6⋅6+6(28i)-28i⋅6-28i(28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2
Simplify.
Step 6.3.2.1
Multiply 6 by 6.
6+28i36+6(28i)-28i⋅6-28i(28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.2
Multiply 28 by 6.
6+28i36+168i-28i⋅6-28i(28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.3
Multiply 6 by -28.
6+28i36+168i-168i-28i(28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.4
Multiply 28 by -28.
6+28i36+168i-168i-784ii[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.5
Raise i to the power of 1.
6+28i36+168i-168i-784(i1i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.6
Raise i to the power of 1.
6+28i36+168i-168i-784(i1i1)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.7
Use the power rule aman=am+n to combine exponents.
6+28i36+168i-168i-784i1+1[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.8
Add 1 and 1.
6+28i36+168i-168i-784i2[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.9
Subtract 168i from 168i.
6+28i36+0-784i2[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.10
Add 36 and 0.
6+28i36-784i2[2+4i-(1-3i)-(-3+i)-3-3i]
6+28i36-784i2[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.3
Simplify each term.
Step 6.3.3.1
Rewrite i2 as -1.
6+28i36-784⋅-1[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.3.2
Multiply -784 by -1.
6+28i36+784[2+4i-(1-3i)-(-3+i)-3-3i]
6+28i36+784[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.4
Add 36 and 784.
6+28i820[2+4i-(1-3i)-(-3+i)-3-3i]
6+28i820[2+4i-(1-3i)-(-3+i)-3-3i]
6+28i820[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7
Step 7.1
Factor 2 out of 6.
2(3)+28i820[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7.2
Factor 2 out of 28i.
2(3)+2(14i)820[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7.3
Factor 2 out of 2(3)+2(14i).
2(3+14i)820[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7.4
Cancel the common factors.
Step 7.4.1
Factor 2 out of 820.
2(3+14i)2⋅410[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7.4.2
Cancel the common factor.
2(3+14i)2⋅410[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7.4.3
Rewrite the expression.
3+14i410[2+4i-(1-3i)-(-3+i)-3-3i]
3+14i410[2+4i-(1-3i)-(-3+i)-3-3i]
3+14i410[2+4i-(1-3i)-(-3+i)-3-3i]
Step 8
Split the fraction 3+14i410 into two fractions.
(3410+14i410)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 9
Step 9.1
Factor 2 out of 14i.
(3410+2(7i)410)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 9.2
Cancel the common factors.
Step 9.2.1
Factor 2 out of 410.
(3410+2(7i)2(205))[2+4i-(1-3i)-(-3+i)-3-3i]
Step 9.2.2
Cancel the common factor.
(3410+2(7i)2⋅205)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 9.2.3
Rewrite the expression.
(3410+7i205)[2+4i-(1-3i)-(-3+i)-3-3i]
(3410+7i205)[2+4i-(1-3i)-(-3+i)-3-3i]
(3410+7i205)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 10
Apply the distributive property.
(3410+7i205)[2+4i-1⋅1-(-3i)-(-3+i)-3-3i]
Step 11
Multiply -1 by 1.
(3410+7i205)[2+4i-1-(-3i)-(-3+i)-3-3i]
Step 12
Multiply -3 by -1.
(3410+7i205)[2+4i-1+3i-(-3+i)-3-3i]
Step 13
Apply the distributive property.
(3410+7i205)[2+4i-1+3i--3-i-3-3i]
Step 14
Multiply -1 by -3.
(3410+7i205)[2+4i-1+3i3-i-3-3i]
Step 15
Multiply 3410+7i205 by each element of the matrix.
[(3410+7i205)(2+4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16
Step 16.1
Expand (3410+7i205)(2+4i) using the FOIL Method.
Step 16.1.1
Apply the distributive property.
[3410(2+4i)+7i205(2+4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.1.2
Apply the distributive property.
[3410⋅2+3410(4i)+7i205(2+4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.1.3
Apply the distributive property.
[3410⋅2+3410(4i)+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3410⋅2+3410(4i)+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2
Simplify and combine like terms.
Step 16.2.1
Simplify each term.
Step 16.2.1.1
Cancel the common factor of 2.
Step 16.2.1.1.1
Factor 2 out of 410.
[32(205)⋅2+3410(4i)+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.1.2
Cancel the common factor.
[32⋅205⋅2+3410(4i)+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.1.3
Rewrite the expression.
[3205+3410(4i)+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3205+3410(4i)+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.2
Cancel the common factor of 2.
Step 16.2.1.2.1
Factor 2 out of 410.
[3205+32(205)(4i)+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.2.2
Factor 2 out of 4i.
[3205+32(205)(2(2i))+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.2.3
Cancel the common factor.
[3205+32⋅205(2(2i))+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.2.4
Rewrite the expression.
[3205+3205(2i)+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3205+3205(2i)+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.3
Combine 2 and 3205.
[3205+2⋅3205i+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.4
Multiply 2 by 3.
[3205+6205i+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.5
Combine 6205 and i.
[3205+6i205+7i205⋅2+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.6
Multiply 7i205⋅2.
Step 16.2.1.6.1
Combine 7i205 and 2.
[3205+6i205+7i⋅2205+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.6.2
Multiply 2 by 7.
[3205+6i205+14i205+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3205+6i205+14i205+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7
Multiply 7i205(4i).
Step 16.2.1.7.1
Combine 4 and 7i205.
[3205+6i205+14i205+4(7i)205i(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.2
Multiply 7 by 4.
[3205+6i205+14i205+28i205i(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.3
Combine 28i205 and i.
[3205+6i205+14i205+28ii205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.4
Raise i to the power of 1.
[3205+6i205+14i205+28(i1i)205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.5
Raise i to the power of 1.
[3205+6i205+14i205+28(i1i1)205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.6
Use the power rule aman=am+n to combine exponents.
[3205+6i205+14i205+28i1+1205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.7
Add 1 and 1.
[3205+6i205+14i205+28i2205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3205+6i205+14i205+28i2205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.8
Rewrite i2 as -1.
[3205+6i205+14i205+28⋅-1205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.9
Multiply 28 by -1.
[3205+6i205+14i205+-28205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.10
Move the negative in front of the fraction.
[3205+6i205+14i205-28205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3205+6i205+14i205-28205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.2
Combine the numerators over the common denominator.
[3-28205+6i205+14i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.3
Subtract 28 from 3.
[-25205+6i205+14i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.4
Combine the numerators over the common denominator.
[-25205+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-25205+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3
Simplify each term.
Step 16.3.1
Cancel the common factor of -25 and 205.
Step 16.3.1.1
Factor 5 out of -25.
[5(-5)205+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.1.2
Cancel the common factors.
Step 16.3.1.2.1
Factor 5 out of 205.
[5⋅-55⋅41+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.1.2.2
Cancel the common factor.
[5⋅-55⋅41+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.1.2.3
Rewrite the expression.
[-541+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.2
Move the negative in front of the fraction.
[-541+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.3
Cancel the common factor of 20 and 205.
Step 16.3.3.1
Factor 5 out of 20i.
[-541+5(4i)205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.3.2
Cancel the common factors.
Step 16.3.3.2.1
Factor 5 out of 205.
[-541+5(4i)5(41)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.3.2.2
Cancel the common factor.
[-541+5(4i)5⋅41(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.3.2.3
Rewrite the expression.
[-541+4i41(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.4
Expand (3410+7i205)(-1+3i) using the FOIL Method.
Step 16.4.1
Apply the distributive property.
[-541+4i413410(-1+3i)+7i205(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.4.2
Apply the distributive property.
[-541+4i413410⋅-1+3410(3i)+7i205(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.4.3
Apply the distributive property.
[-541+4i413410⋅-1+3410(3i)+7i205⋅-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i413410⋅-1+3410(3i)+7i205⋅-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5
Simplify and combine like terms.
Step 16.5.1
Simplify each term.
Step 16.5.1.1
Multiply 3410⋅-1.
Step 16.5.1.1.1
Combine 3410 and -1.
[-541+4i413⋅-1410+3410(3i)+7i205⋅-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.1.2
Multiply 3 by -1.
[-541+4i41-3410+3410(3i)+7i205⋅-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410+3410(3i)+7i205⋅-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.2
Move the negative in front of the fraction.
[-541+4i41-3410+3410(3i)+7i205⋅-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.3
Multiply 3410(3i).
Step 16.5.1.3.1
Combine 3 and 3410.
[-541+4i41-3410+3⋅3410i+7i205⋅-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.3.2
Multiply 3 by 3.
[-541+4i41-3410+9410i+7i205⋅-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.3.3
Combine 9410 and i.
[-541+4i41-3410+9i410+7i205⋅-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410+9i410+7i205⋅-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.4
Multiply 7i205⋅-1.
Step 16.5.1.4.1
Combine 7i205 and -1.
[-541+4i41-3410+9i410+7i⋅-1205+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.4.2
Multiply -1 by 7.
[-541+4i41-3410+9i410+-7i205+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410+9i410+-7i205+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.5
Move the negative in front of the fraction.
[-541+4i41-3410+9i410-7i205+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6
Multiply 7i205(3i).
Step 16.5.1.6.1
Combine 3 and 7i205.
[-541+4i41-3410+9i410-7i205+3(7i)205i(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.2
Multiply 7 by 3.
[-541+4i41-3410+9i410-7i205+21i205i(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.3
Combine 21i205 and i.
[-541+4i41-3410+9i410-7i205+21ii205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.4
Raise i to the power of 1.
[-541+4i41-3410+9i410-7i205+21(i1i)205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.5
Raise i to the power of 1.
[-541+4i41-3410+9i410-7i205+21(i1i1)205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.6
Use the power rule aman=am+n to combine exponents.
[-541+4i41-3410+9i410-7i205+21i1+1205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.7
Add 1 and 1.
[-541+4i41-3410+9i410-7i205+21i2205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410+9i410-7i205+21i2205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.7
Rewrite i2 as -1.
[-541+4i41-3410+9i410-7i205+21⋅-1205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.8
Multiply 21 by -1.
[-541+4i41-3410+9i410-7i205+-21205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.9
Move the negative in front of the fraction.
[-541+4i41-3410+9i410-7i205-21205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410+9i410-7i205-21205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.2
To write -21205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-3410-21205⋅22+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.3
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Step 16.5.3.1
Multiply 21205 by 22.
[-541+4i41-3410-21⋅2205⋅2+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.3.2
Multiply 205 by 2.
[-541+4i41-3410-21⋅2410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410-21⋅2410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.4
Combine the numerators over the common denominator.
[-541+4i41-3-21⋅2410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.5
Simplify the numerator.
Step 16.5.5.1
Multiply -21 by 2.
[-541+4i41-3-42410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.5.2
Subtract 42 from -3.
[-541+4i41-45410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-45410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.6
To write -7i205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-45410+9i410-7i205⋅22(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.7
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Step 16.5.7.1
Multiply 7i205 by 22.
[-541+4i41-45410+9i410-7i⋅2205⋅2(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.7.2
Multiply 205 by 2.
[-541+4i41-45410+9i410-7i⋅2410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-45410+9i410-7i⋅2410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.8
Combine the numerators over the common denominator.
[-541+4i41-45410+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-45410+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6
Simplify each term.
Step 16.6.1
Cancel the common factor of -45 and 410.
Step 16.6.1.1
Factor 5 out of -45.
[-541+4i415(-9)410+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.1.2
Cancel the common factors.
Step 16.6.1.2.1
Factor 5 out of 410.
[-541+4i415⋅-95⋅82+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.1.2.2
Cancel the common factor.
[-541+4i415⋅-95⋅82+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.1.2.3
Rewrite the expression.
[-541+4i41-982+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-982+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-982+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.2
Move the negative in front of the fraction.
[-541+4i41-982+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.3
Cancel the common factor of -5 and 410.
Step 16.6.3.1
Factor 5 out of -5i.
[-541+4i41-982+5(-i)410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.3.2
Cancel the common factors.
Step 16.6.3.2.1
Factor 5 out of 410.
[-541+4i41-982+5(-i)5(82)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.3.2.2
Cancel the common factor.
[-541+4i41-982+5(-i)5⋅82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.3.2.3
Rewrite the expression.
[-541+4i41-982+-i82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-982+-i82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-982+-i82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.4
Move the negative in front of the fraction.
[-541+4i41-982-i82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-982-i82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.7
Expand (3410+7i205)(3-i) using the FOIL Method.
Step 16.7.1
Apply the distributive property.
[-541+4i41-982-i823410(3-i)+7i205(3-i)(3410+7i205)(-3-3i)]
Step 16.7.2
Apply the distributive property.
[-541+4i41-982-i823410⋅3+3410(-i)+7i205(3-i)(3410+7i205)(-3-3i)]
Step 16.7.3
Apply the distributive property.
[-541+4i41-982-i823410⋅3+3410(-i)+7i205⋅3+7i205(-i)(3410+7i205)(-3-3i)]
[-541+4i41-982-i823410⋅3+3410(-i)+7i205⋅3+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8
Simplify and combine like terms.
Step 16.8.1
Simplify each term.
Step 16.8.1.1
Multiply 3410⋅3.
Step 16.8.1.1.1
Combine 3410 and 3.
[-541+4i41-982-i823⋅3410+3410(-i)+7i205⋅3+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8.1.1.2
Multiply 3 by 3.
[-541+4i41-982-i829410+3410(-i)+7i205⋅3+7i205(-i)(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410+3410(-i)+7i205⋅3+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8.1.2
Combine 3410 and i.
[-541+4i41-982-i829410-3i410+7i205⋅3+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8.1.3
Multiply 7i205⋅3.
Step 16.8.1.3.1
Combine 7i205 and 3.
[-541+4i41-982-i829410-3i410+7i⋅3205+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8.1.3.2
Multiply 3 by 7.
[-541+4i41-982-i829410-3i410+21i205+7i205(-i)(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410-3i410+21i205+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8.1.4
Multiply 7i205(-i).
Step 16.8.1.4.1
Combine 7i205 and i.
[-541+4i41-982-i829410-3i410+21i205-7ii205(3410+7i205)(-3-3i)]
Step 16.8.1.4.2
Raise i to the power of 1.
[-541+4i41-982-i829410-3i410+21i205-7(i1i)205(3410+7i205)(-3-3i)]
Step 16.8.1.4.3
Raise i to the power of 1.
[-541+4i41-982-i829410-3i410+21i205-7(i1i1)205(3410+7i205)(-3-3i)]
Step 16.8.1.4.4
Use the power rule aman=am+n to combine exponents.
[-541+4i41-982-i829410-3i410+21i205-7i1+1205(3410+7i205)(-3-3i)]
Step 16.8.1.4.5
Add 1 and 1.
[-541+4i41-982-i829410-3i410+21i205-7i2205(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410-3i410+21i205-7i2205(3410+7i205)(-3-3i)]
Step 16.8.1.5
Rewrite i2 as -1.
[-541+4i41-982-i829410-3i410+21i205-7⋅-1205(3410+7i205)(-3-3i)]
Step 16.8.1.6
Multiply 7 by -1.
[-541+4i41-982-i829410-3i410+21i205--7205(3410+7i205)(-3-3i)]
Step 16.8.1.7
Move the negative in front of the fraction.
[-541+4i41-982-i829410-3i410+21i205--7205(3410+7i205)(-3-3i)]
Step 16.8.1.8
Multiply --7205.
Step 16.8.1.8.1
Multiply -1 by -1.
[-541+4i41-982-i829410-3i410+21i205+1(7205)(3410+7i205)(-3-3i)]
Step 16.8.1.8.2
Multiply 7205 by 1.
[-541+4i41-982-i829410-3i410+21i205+7205(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410-3i410+21i205+7205(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410-3i410+21i205+7205(3410+7i205)(-3-3i)]
Step 16.8.2
To write 7205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-982-i829410+7205⋅22-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.3
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Step 16.8.3.1
Multiply 7205 by 22.
[-541+4i41-982-i829410+7⋅2205⋅2-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.3.2
Multiply 205 by 2.
[-541+4i41-982-i829410+7⋅2410-3i410+21i205(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410+7⋅2410-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.4
Combine the numerators over the common denominator.
[-541+4i41-982-i829+7⋅2410-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.5
Simplify the numerator.
Step 16.8.5.1
Multiply 7 by 2.
[-541+4i41-982-i829+14410-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.5.2
Add 9 and 14.
[-541+4i41-982-i8223410-3i410+21i205(3410+7i205)(-3-3i)]
[-541+4i41-982-i8223410-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.6
To write 21i205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-982-i8223410-3i410+21i205⋅22(3410+7i205)(-3-3i)]
Step 16.8.7
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Step 16.8.7.1
Multiply 21i205 by 22.
[-541+4i41-982-i8223410-3i410+21i⋅2205⋅2(3410+7i205)(-3-3i)]
Step 16.8.7.2
Multiply 205 by 2.
[-541+4i41-982-i8223410-3i410+21i⋅2410(3410+7i205)(-3-3i)]
[-541+4i41-982-i8223410-3i410+21i⋅2410(3410+7i205)(-3-3i)]
Step 16.8.8
Combine the numerators over the common denominator.
[-541+4i41-982-i8223410+39i410(3410+7i205)(-3-3i)]
[-541+4i41-982-i8223410+39i410(3410+7i205)(-3-3i)]
Step 16.9
Expand (3410+7i205)(-3-3i) using the FOIL Method.
Step 16.9.1
Apply the distributive property.
[-541+4i41-982-i8223410+39i4103410(-3-3i)+7i205(-3-3i)]
Step 16.9.2
Apply the distributive property.
[-541+4i41-982-i8223410+39i4103410⋅-3+3410(-3i)+7i205(-3-3i)]
Step 16.9.3
Apply the distributive property.
[-541+4i41-982-i8223410+39i4103410⋅-3+3410(-3i)+7i205⋅-3+7i205(-3i)]
[-541+4i41-982-i8223410+39i4103410⋅-3+3410(-3i)+7i205⋅-3+7i205(-3i)]
Step 16.10
Simplify and combine like terms.
Step 16.10.1
Simplify each term.
Step 16.10.1.1
Multiply 3410⋅-3.
Step 16.10.1.1.1
Combine 3410 and -3.
[-541+4i41-982-i8223410+39i4103⋅-3410+3410(-3i)+7i205⋅-3+7i205(-3i)]
Step 16.10.1.1.2
Multiply 3 by -3.
[-541+4i41-982-i8223410+39i410-9410+3410(-3i)+7i205⋅-3+7i205(-3i)]
[-541+4i41-982-i8223410+39i410-9410+3410(-3i)+7i205⋅-3+7i205(-3i)]
Step 16.10.1.2
Move the negative in front of the fraction.
[-541+4i41-982-i8223410+39i410-9410+3410(-3i)+7i205⋅-3+7i205(-3i)]
Step 16.10.1.3
Multiply 3410(-3i).
Step 16.10.1.3.1
Combine -3 and 3410.
[-541+4i41-982-i8223410+39i410-9410+-3⋅3410i+7i205⋅-3+7i205(-3i)]
Step 16.10.1.3.2
Multiply -3 by 3.
[-541+4i41-982-i8223410+39i410-9410+-9410i+7i205⋅-3+7i205(-3i)]
Step 16.10.1.3.3
Combine -9410 and i.
[-541+4i41-982-i8223410+39i410-9410+-9i410+7i205⋅-3+7i205(-3i)]
[-541+4i41-982-i8223410+39i410-9410+-9i410+7i205⋅-3+7i205(-3i)]
Step 16.10.1.4
Move the negative in front of the fraction.
[-541+4i41-982-i8223410+39i410-9410-9i410+7i205⋅-3+7i205(-3i)]
Step 16.10.1.5
Multiply 7i205⋅-3.
Step 16.10.1.5.1
Combine 7i205 and -3.
[-541+4i41-982-i8223410+39i410-9410-9i410+7i⋅-3205+7i205(-3i)]
Step 16.10.1.5.2
Multiply -3 by 7.
[-541+4i41-982-i8223410+39i410-9410-9i410+-21i205+7i205(-3i)]
[-541+4i41-982-i8223410+39i410-9410-9i410+-21i205+7i205(-3i)]
Step 16.10.1.6
Move the negative in front of the fraction.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+7i205(-3i)]
Step 16.10.1.7
Multiply 7i205(-3i).
Step 16.10.1.7.1
Combine -3 and 7i205.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-3(7i)205i]
Step 16.10.1.7.2
Multiply 7 by -3.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21i205i]
Step 16.10.1.7.3
Combine -21i205 and i.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21ii205]
Step 16.10.1.7.4
Raise i to the power of 1.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21(i1i)205]
Step 16.10.1.7.5
Raise i to the power of 1.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21(i1i1)205]
Step 16.10.1.7.6
Use the power rule aman=am+n to combine exponents.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21i1+1205]
Step 16.10.1.7.7
Add 1 and 1.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21i2205]
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21i2205]
Step 16.10.1.8
Rewrite i2 as -1.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21⋅-1205]
Step 16.10.1.9
Multiply -21 by -1.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+21205]
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+21205]
Step 16.10.2
To write 21205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-982-i8223410+39i410-9410+21205⋅22-9i410-21i205]
Step 16.10.3
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Step 16.10.3.1
Multiply 21205 by 22.
[-541+4i41-982-i8223410+39i410-9410+21⋅2205⋅2-9i410-21i205]
Step 16.10.3.2
Multiply 205 by 2.
[-541+4i41-982-i8223410+39i410-9410+21⋅2410-9i410-21i205]
[-541+4i41-982-i8223410+39i410-9410+21⋅2410-9i410-21i205]
Step 16.10.4
Combine the numerators over the common denominator.
[-541+4i41-982-i8223410+39i410-9+21⋅2410-9i410-21i205]
Step 16.10.5
Simplify the numerator.
Step 16.10.5.1
Multiply 21 by 2.
[-541+4i41-982-i8223410+39i410-9+42410-9i410-21i205]
Step 16.10.5.2
Add -9 and 42.
[-541+4i41-982-i8223410+39i41033410-9i410-21i205]
[-541+4i41-982-i8223410+39i41033410-9i410-21i205]
Step 16.10.6
To write -21i205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-982-i8223410+39i41033410-9i410-21i205⋅22]
Step 16.10.7
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Step 16.10.7.1
Multiply 21i205 by 22.
[-541+4i41-982-i8223410+39i41033410-9i410-21i⋅2205⋅2]
Step 16.10.7.2
Multiply 205 by 2.
[-541+4i41-982-i8223410+39i41033410-9i410-21i⋅2410]
[-541+4i41-982-i8223410+39i41033410-9i410-21i⋅2410]
Step 16.10.8
Combine the numerators over the common denominator.
[-541+4i41-982-i8223410+39i41033410+-51i410]
[-541+4i41-982-i8223410+39i41033410+-51i410]
Step 16.11
Move the negative in front of the fraction.
[-541+4i41-982-i8223410+39i41033410-51i410]
[-541+4i41-982-i8223410+39i41033410-51i410]