Linear Algebra Examples

Find the Inverse A=[[-3-3i,1-3i],[-3+i,2+4i]]
A=[-3-3i1-3i-3+i2+4i]
Step 1
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
Step 2
Find the determinant.
Tap for more steps...
Step 2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
(-3-3i)(2+4i)-(-3+i)(1-3i)
Step 2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Expand (-3-3i)(2+4i) using the FOIL Method.
Tap for more steps...
Step 2.2.1.1.1
Apply the distributive property.
-3(2+4i)-3i(2+4i)-(-3+i)(1-3i)
Step 2.2.1.1.2
Apply the distributive property.
-32-3(4i)-3i(2+4i)-(-3+i)(1-3i)
Step 2.2.1.1.3
Apply the distributive property.
-32-3(4i)-3i2-3i(4i)-(-3+i)(1-3i)
-32-3(4i)-3i2-3i(4i)-(-3+i)(1-3i)
Step 2.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 2.2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.2.1.1
Multiply -3 by 2.
-6-3(4i)-3i2-3i(4i)-(-3+i)(1-3i)
Step 2.2.1.2.1.2
Multiply 4 by -3.
-6-12i-3i2-3i(4i)-(-3+i)(1-3i)
Step 2.2.1.2.1.3
Multiply 2 by -3.
-6-12i-6i-3i(4i)-(-3+i)(1-3i)
Step 2.2.1.2.1.4
Multiply -3i(4i).
Tap for more steps...
Step 2.2.1.2.1.4.1
Multiply 4 by -3.
-6-12i-6i-12ii-(-3+i)(1-3i)
Step 2.2.1.2.1.4.2
Raise i to the power of 1.
-6-12i-6i-12(i1i)-(-3+i)(1-3i)
Step 2.2.1.2.1.4.3
Raise i to the power of 1.
-6-12i-6i-12(i1i1)-(-3+i)(1-3i)
Step 2.2.1.2.1.4.4
Use the power rule aman=am+n to combine exponents.
-6-12i-6i-12i1+1-(-3+i)(1-3i)
Step 2.2.1.2.1.4.5
Add 1 and 1.
-6-12i-6i-12i2-(-3+i)(1-3i)
-6-12i-6i-12i2-(-3+i)(1-3i)
Step 2.2.1.2.1.5
Rewrite i2 as -1.
-6-12i-6i-12-1-(-3+i)(1-3i)
Step 2.2.1.2.1.6
Multiply -12 by -1.
-6-12i-6i+12-(-3+i)(1-3i)
-6-12i-6i+12-(-3+i)(1-3i)
Step 2.2.1.2.2
Add -6 and 12.
6-12i-6i-(-3+i)(1-3i)
Step 2.2.1.2.3
Subtract 6i from -12i.
6-18i-(-3+i)(1-3i)
6-18i-(-3+i)(1-3i)
Step 2.2.1.3
Apply the distributive property.
6-18i+(--3-i)(1-3i)
Step 2.2.1.4
Multiply -1 by -3.
6-18i+(3-i)(1-3i)
Step 2.2.1.5
Expand (3-i)(1-3i) using the FOIL Method.
Tap for more steps...
Step 2.2.1.5.1
Apply the distributive property.
6-18i+3(1-3i)-i(1-3i)
Step 2.2.1.5.2
Apply the distributive property.
6-18i+31+3(-3i)-i(1-3i)
Step 2.2.1.5.3
Apply the distributive property.
6-18i+31+3(-3i)-i1-i(-3i)
6-18i+31+3(-3i)-i1-i(-3i)
Step 2.2.1.6
Simplify and combine like terms.
Tap for more steps...
Step 2.2.1.6.1
Simplify each term.
Tap for more steps...
Step 2.2.1.6.1.1
Multiply 3 by 1.
6-18i+3+3(-3i)-i1-i(-3i)
Step 2.2.1.6.1.2
Multiply -3 by 3.
6-18i+3-9i-i1-i(-3i)
Step 2.2.1.6.1.3
Multiply -1 by 1.
6-18i+3-9i-i-i(-3i)
Step 2.2.1.6.1.4
Multiply -i(-3i).
Tap for more steps...
Step 2.2.1.6.1.4.1
Multiply -3 by -1.
6-18i+3-9i-i+3ii
Step 2.2.1.6.1.4.2
Raise i to the power of 1.
6-18i+3-9i-i+3(i1i)
Step 2.2.1.6.1.4.3
Raise i to the power of 1.
6-18i+3-9i-i+3(i1i1)
Step 2.2.1.6.1.4.4
Use the power rule aman=am+n to combine exponents.
6-18i+3-9i-i+3i1+1
Step 2.2.1.6.1.4.5
Add 1 and 1.
6-18i+3-9i-i+3i2
6-18i+3-9i-i+3i2
Step 2.2.1.6.1.5
Rewrite i2 as -1.
6-18i+3-9i-i+3-1
Step 2.2.1.6.1.6
Multiply 3 by -1.
6-18i+3-9i-i-3
6-18i+3-9i-i-3
Step 2.2.1.6.2
Subtract 3 from 3.
6-18i+0-9i-i
Step 2.2.1.6.3
Subtract 9i from 0.
6-18i-9i-i
Step 2.2.1.6.4
Subtract i from -9i.
6-18i-10i
6-18i-10i
6-18i-10i
Step 2.2.2
Subtract 10i from -18i.
6-28i
6-28i
6-28i
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
16-28i[2+4i-(1-3i)-(-3+i)-3-3i]
Step 5
Multiply the numerator and denominator of 16-28i by the conjugate of 6-28i to make the denominator real.
16-28i6+28i6+28i[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6
Multiply.
Tap for more steps...
Step 6.1
Combine.
1(6+28i)(6-28i)(6+28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.2
Multiply 6+28i by 1.
6+28i(6-28i)(6+28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3
Simplify the denominator.
Tap for more steps...
Step 6.3.1
Expand (6-28i)(6+28i) using the FOIL Method.
Tap for more steps...
Step 6.3.1.1
Apply the distributive property.
6+28i6(6+28i)-28i(6+28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.1.2
Apply the distributive property.
6+28i66+6(28i)-28i(6+28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.1.3
Apply the distributive property.
6+28i66+6(28i)-28i6-28i(28i)[2+4i-(1-3i)-(-3+i)-3-3i]
6+28i66+6(28i)-28i6-28i(28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2
Simplify.
Tap for more steps...
Step 6.3.2.1
Multiply 6 by 6.
6+28i36+6(28i)-28i6-28i(28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.2
Multiply 28 by 6.
6+28i36+168i-28i6-28i(28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.3
Multiply 6 by -28.
6+28i36+168i-168i-28i(28i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.4
Multiply 28 by -28.
6+28i36+168i-168i-784ii[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.5
Raise i to the power of 1.
6+28i36+168i-168i-784(i1i)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.6
Raise i to the power of 1.
6+28i36+168i-168i-784(i1i1)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.7
Use the power rule aman=am+n to combine exponents.
6+28i36+168i-168i-784i1+1[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.8
Add 1 and 1.
6+28i36+168i-168i-784i2[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.9
Subtract 168i from 168i.
6+28i36+0-784i2[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.2.10
Add 36 and 0.
6+28i36-784i2[2+4i-(1-3i)-(-3+i)-3-3i]
6+28i36-784i2[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.3
Simplify each term.
Tap for more steps...
Step 6.3.3.1
Rewrite i2 as -1.
6+28i36-784-1[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.3.2
Multiply -784 by -1.
6+28i36+784[2+4i-(1-3i)-(-3+i)-3-3i]
6+28i36+784[2+4i-(1-3i)-(-3+i)-3-3i]
Step 6.3.4
Add 36 and 784.
6+28i820[2+4i-(1-3i)-(-3+i)-3-3i]
6+28i820[2+4i-(1-3i)-(-3+i)-3-3i]
6+28i820[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7
Cancel the common factor of 6+28i and 820.
Tap for more steps...
Step 7.1
Factor 2 out of 6.
2(3)+28i820[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7.2
Factor 2 out of 28i.
2(3)+2(14i)820[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7.3
Factor 2 out of 2(3)+2(14i).
2(3+14i)820[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7.4
Cancel the common factors.
Tap for more steps...
Step 7.4.1
Factor 2 out of 820.
2(3+14i)2410[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7.4.2
Cancel the common factor.
2(3+14i)2410[2+4i-(1-3i)-(-3+i)-3-3i]
Step 7.4.3
Rewrite the expression.
3+14i410[2+4i-(1-3i)-(-3+i)-3-3i]
3+14i410[2+4i-(1-3i)-(-3+i)-3-3i]
3+14i410[2+4i-(1-3i)-(-3+i)-3-3i]
Step 8
Split the fraction 3+14i410 into two fractions.
(3410+14i410)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 9
Cancel the common factor of 14 and 410.
Tap for more steps...
Step 9.1
Factor 2 out of 14i.
(3410+2(7i)410)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 9.2
Cancel the common factors.
Tap for more steps...
Step 9.2.1
Factor 2 out of 410.
(3410+2(7i)2(205))[2+4i-(1-3i)-(-3+i)-3-3i]
Step 9.2.2
Cancel the common factor.
(3410+2(7i)2205)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 9.2.3
Rewrite the expression.
(3410+7i205)[2+4i-(1-3i)-(-3+i)-3-3i]
(3410+7i205)[2+4i-(1-3i)-(-3+i)-3-3i]
(3410+7i205)[2+4i-(1-3i)-(-3+i)-3-3i]
Step 10
Apply the distributive property.
(3410+7i205)[2+4i-11-(-3i)-(-3+i)-3-3i]
Step 11
Multiply -1 by 1.
(3410+7i205)[2+4i-1-(-3i)-(-3+i)-3-3i]
Step 12
Multiply -3 by -1.
(3410+7i205)[2+4i-1+3i-(-3+i)-3-3i]
Step 13
Apply the distributive property.
(3410+7i205)[2+4i-1+3i--3-i-3-3i]
Step 14
Multiply -1 by -3.
(3410+7i205)[2+4i-1+3i3-i-3-3i]
Step 15
Multiply 3410+7i205 by each element of the matrix.
[(3410+7i205)(2+4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16
Simplify each element in the matrix.
Tap for more steps...
Step 16.1
Expand (3410+7i205)(2+4i) using the FOIL Method.
Tap for more steps...
Step 16.1.1
Apply the distributive property.
[3410(2+4i)+7i205(2+4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.1.2
Apply the distributive property.
[34102+3410(4i)+7i205(2+4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.1.3
Apply the distributive property.
[34102+3410(4i)+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[34102+3410(4i)+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2
Simplify and combine like terms.
Tap for more steps...
Step 16.2.1
Simplify each term.
Tap for more steps...
Step 16.2.1.1
Cancel the common factor of 2.
Tap for more steps...
Step 16.2.1.1.1
Factor 2 out of 410.
[32(205)2+3410(4i)+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.1.2
Cancel the common factor.
[322052+3410(4i)+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.1.3
Rewrite the expression.
[3205+3410(4i)+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3205+3410(4i)+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 16.2.1.2.1
Factor 2 out of 410.
[3205+32(205)(4i)+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.2.2
Factor 2 out of 4i.
[3205+32(205)(2(2i))+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.2.3
Cancel the common factor.
[3205+32205(2(2i))+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.2.4
Rewrite the expression.
[3205+3205(2i)+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3205+3205(2i)+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.3
Combine 2 and 3205.
[3205+23205i+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.4
Multiply 2 by 3.
[3205+6205i+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.5
Combine 6205 and i.
[3205+6i205+7i2052+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.6
Multiply 7i2052.
Tap for more steps...
Step 16.2.1.6.1
Combine 7i205 and 2.
[3205+6i205+7i2205+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.6.2
Multiply 2 by 7.
[3205+6i205+14i205+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3205+6i205+14i205+7i205(4i)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7
Multiply 7i205(4i).
Tap for more steps...
Step 16.2.1.7.1
Combine 4 and 7i205.
[3205+6i205+14i205+4(7i)205i(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.2
Multiply 7 by 4.
[3205+6i205+14i205+28i205i(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.3
Combine 28i205 and i.
[3205+6i205+14i205+28ii205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.4
Raise i to the power of 1.
[3205+6i205+14i205+28(i1i)205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.5
Raise i to the power of 1.
[3205+6i205+14i205+28(i1i1)205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.6
Use the power rule aman=am+n to combine exponents.
[3205+6i205+14i205+28i1+1205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.7.7
Add 1 and 1.
[3205+6i205+14i205+28i2205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3205+6i205+14i205+28i2205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.8
Rewrite i2 as -1.
[3205+6i205+14i205+28-1205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.9
Multiply 28 by -1.
[3205+6i205+14i205+-28205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.1.10
Move the negative in front of the fraction.
[3205+6i205+14i205-28205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[3205+6i205+14i205-28205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.2
Combine the numerators over the common denominator.
[3-28205+6i205+14i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.3
Subtract 28 from 3.
[-25205+6i205+14i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.2.4
Combine the numerators over the common denominator.
[-25205+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-25205+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3
Simplify each term.
Tap for more steps...
Step 16.3.1
Cancel the common factor of -25 and 205.
Tap for more steps...
Step 16.3.1.1
Factor 5 out of -25.
[5(-5)205+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.1.2
Cancel the common factors.
Tap for more steps...
Step 16.3.1.2.1
Factor 5 out of 205.
[5-5541+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.1.2.2
Cancel the common factor.
[5-5541+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.1.2.3
Rewrite the expression.
[-541+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.2
Move the negative in front of the fraction.
[-541+20i205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.3
Cancel the common factor of 20 and 205.
Tap for more steps...
Step 16.3.3.1
Factor 5 out of 20i.
[-541+5(4i)205(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.3.2
Cancel the common factors.
Tap for more steps...
Step 16.3.3.2.1
Factor 5 out of 205.
[-541+5(4i)5(41)(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.3.2.2
Cancel the common factor.
[-541+5(4i)541(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.3.3.2.3
Rewrite the expression.
[-541+4i41(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41(3410+7i205)(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.4
Expand (3410+7i205)(-1+3i) using the FOIL Method.
Tap for more steps...
Step 16.4.1
Apply the distributive property.
[-541+4i413410(-1+3i)+7i205(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.4.2
Apply the distributive property.
[-541+4i413410-1+3410(3i)+7i205(-1+3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.4.3
Apply the distributive property.
[-541+4i413410-1+3410(3i)+7i205-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i413410-1+3410(3i)+7i205-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5
Simplify and combine like terms.
Tap for more steps...
Step 16.5.1
Simplify each term.
Tap for more steps...
Step 16.5.1.1
Multiply 3410-1.
Tap for more steps...
Step 16.5.1.1.1
Combine 3410 and -1.
[-541+4i413-1410+3410(3i)+7i205-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.1.2
Multiply 3 by -1.
[-541+4i41-3410+3410(3i)+7i205-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410+3410(3i)+7i205-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.2
Move the negative in front of the fraction.
[-541+4i41-3410+3410(3i)+7i205-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.3
Multiply 3410(3i).
Tap for more steps...
Step 16.5.1.3.1
Combine 3 and 3410.
[-541+4i41-3410+33410i+7i205-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.3.2
Multiply 3 by 3.
[-541+4i41-3410+9410i+7i205-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.3.3
Combine 9410 and i.
[-541+4i41-3410+9i410+7i205-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410+9i410+7i205-1+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.4
Multiply 7i205-1.
Tap for more steps...
Step 16.5.1.4.1
Combine 7i205 and -1.
[-541+4i41-3410+9i410+7i-1205+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.4.2
Multiply -1 by 7.
[-541+4i41-3410+9i410+-7i205+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410+9i410+-7i205+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.5
Move the negative in front of the fraction.
[-541+4i41-3410+9i410-7i205+7i205(3i)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6
Multiply 7i205(3i).
Tap for more steps...
Step 16.5.1.6.1
Combine 3 and 7i205.
[-541+4i41-3410+9i410-7i205+3(7i)205i(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.2
Multiply 7 by 3.
[-541+4i41-3410+9i410-7i205+21i205i(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.3
Combine 21i205 and i.
[-541+4i41-3410+9i410-7i205+21ii205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.4
Raise i to the power of 1.
[-541+4i41-3410+9i410-7i205+21(i1i)205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.5
Raise i to the power of 1.
[-541+4i41-3410+9i410-7i205+21(i1i1)205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.6
Use the power rule aman=am+n to combine exponents.
[-541+4i41-3410+9i410-7i205+21i1+1205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.6.7
Add 1 and 1.
[-541+4i41-3410+9i410-7i205+21i2205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410+9i410-7i205+21i2205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.7
Rewrite i2 as -1.
[-541+4i41-3410+9i410-7i205+21-1205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.8
Multiply 21 by -1.
[-541+4i41-3410+9i410-7i205+-21205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.1.9
Move the negative in front of the fraction.
[-541+4i41-3410+9i410-7i205-21205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410+9i410-7i205-21205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.2
To write -21205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-3410-2120522+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.3
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 16.5.3.1
Multiply 21205 by 22.
[-541+4i41-3410-2122052+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.3.2
Multiply 205 by 2.
[-541+4i41-3410-212410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-3410-212410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.4
Combine the numerators over the common denominator.
[-541+4i41-3-212410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.5
Simplify the numerator.
Tap for more steps...
Step 16.5.5.1
Multiply -21 by 2.
[-541+4i41-3-42410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.5.2
Subtract 42 from -3.
[-541+4i41-45410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-45410+9i410-7i205(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.6
To write -7i205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-45410+9i410-7i20522(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.7
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 16.5.7.1
Multiply 7i205 by 22.
[-541+4i41-45410+9i410-7i22052(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.7.2
Multiply 205 by 2.
[-541+4i41-45410+9i410-7i2410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-45410+9i410-7i2410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.5.8
Combine the numerators over the common denominator.
[-541+4i41-45410+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-45410+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6
Simplify each term.
Tap for more steps...
Step 16.6.1
Cancel the common factor of -45 and 410.
Tap for more steps...
Step 16.6.1.1
Factor 5 out of -45.
[-541+4i415(-9)410+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.1.2
Cancel the common factors.
Tap for more steps...
Step 16.6.1.2.1
Factor 5 out of 410.
[-541+4i415-9582+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.1.2.2
Cancel the common factor.
[-541+4i415-9582+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.1.2.3
Rewrite the expression.
[-541+4i41-982+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-982+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-982+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.2
Move the negative in front of the fraction.
[-541+4i41-982+-5i410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.3
Cancel the common factor of -5 and 410.
Tap for more steps...
Step 16.6.3.1
Factor 5 out of -5i.
[-541+4i41-982+5(-i)410(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.3.2
Cancel the common factors.
Tap for more steps...
Step 16.6.3.2.1
Factor 5 out of 410.
[-541+4i41-982+5(-i)5(82)(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.3.2.2
Cancel the common factor.
[-541+4i41-982+5(-i)582(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.3.2.3
Rewrite the expression.
[-541+4i41-982+-i82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-982+-i82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-982+-i82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.6.4
Move the negative in front of the fraction.
[-541+4i41-982-i82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
[-541+4i41-982-i82(3410+7i205)(3-i)(3410+7i205)(-3-3i)]
Step 16.7
Expand (3410+7i205)(3-i) using the FOIL Method.
Tap for more steps...
Step 16.7.1
Apply the distributive property.
[-541+4i41-982-i823410(3-i)+7i205(3-i)(3410+7i205)(-3-3i)]
Step 16.7.2
Apply the distributive property.
[-541+4i41-982-i8234103+3410(-i)+7i205(3-i)(3410+7i205)(-3-3i)]
Step 16.7.3
Apply the distributive property.
[-541+4i41-982-i8234103+3410(-i)+7i2053+7i205(-i)(3410+7i205)(-3-3i)]
[-541+4i41-982-i8234103+3410(-i)+7i2053+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8
Simplify and combine like terms.
Tap for more steps...
Step 16.8.1
Simplify each term.
Tap for more steps...
Step 16.8.1.1
Multiply 34103.
Tap for more steps...
Step 16.8.1.1.1
Combine 3410 and 3.
[-541+4i41-982-i8233410+3410(-i)+7i2053+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8.1.1.2
Multiply 3 by 3.
[-541+4i41-982-i829410+3410(-i)+7i2053+7i205(-i)(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410+3410(-i)+7i2053+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8.1.2
Combine 3410 and i.
[-541+4i41-982-i829410-3i410+7i2053+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8.1.3
Multiply 7i2053.
Tap for more steps...
Step 16.8.1.3.1
Combine 7i205 and 3.
[-541+4i41-982-i829410-3i410+7i3205+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8.1.3.2
Multiply 3 by 7.
[-541+4i41-982-i829410-3i410+21i205+7i205(-i)(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410-3i410+21i205+7i205(-i)(3410+7i205)(-3-3i)]
Step 16.8.1.4
Multiply 7i205(-i).
Tap for more steps...
Step 16.8.1.4.1
Combine 7i205 and i.
[-541+4i41-982-i829410-3i410+21i205-7ii205(3410+7i205)(-3-3i)]
Step 16.8.1.4.2
Raise i to the power of 1.
[-541+4i41-982-i829410-3i410+21i205-7(i1i)205(3410+7i205)(-3-3i)]
Step 16.8.1.4.3
Raise i to the power of 1.
[-541+4i41-982-i829410-3i410+21i205-7(i1i1)205(3410+7i205)(-3-3i)]
Step 16.8.1.4.4
Use the power rule aman=am+n to combine exponents.
[-541+4i41-982-i829410-3i410+21i205-7i1+1205(3410+7i205)(-3-3i)]
Step 16.8.1.4.5
Add 1 and 1.
[-541+4i41-982-i829410-3i410+21i205-7i2205(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410-3i410+21i205-7i2205(3410+7i205)(-3-3i)]
Step 16.8.1.5
Rewrite i2 as -1.
[-541+4i41-982-i829410-3i410+21i205-7-1205(3410+7i205)(-3-3i)]
Step 16.8.1.6
Multiply 7 by -1.
[-541+4i41-982-i829410-3i410+21i205--7205(3410+7i205)(-3-3i)]
Step 16.8.1.7
Move the negative in front of the fraction.
[-541+4i41-982-i829410-3i410+21i205--7205(3410+7i205)(-3-3i)]
Step 16.8.1.8
Multiply --7205.
Tap for more steps...
Step 16.8.1.8.1
Multiply -1 by -1.
[-541+4i41-982-i829410-3i410+21i205+1(7205)(3410+7i205)(-3-3i)]
Step 16.8.1.8.2
Multiply 7205 by 1.
[-541+4i41-982-i829410-3i410+21i205+7205(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410-3i410+21i205+7205(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410-3i410+21i205+7205(3410+7i205)(-3-3i)]
Step 16.8.2
To write 7205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-982-i829410+720522-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.3
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 16.8.3.1
Multiply 7205 by 22.
[-541+4i41-982-i829410+722052-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.3.2
Multiply 205 by 2.
[-541+4i41-982-i829410+72410-3i410+21i205(3410+7i205)(-3-3i)]
[-541+4i41-982-i829410+72410-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.4
Combine the numerators over the common denominator.
[-541+4i41-982-i829+72410-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.5
Simplify the numerator.
Tap for more steps...
Step 16.8.5.1
Multiply 7 by 2.
[-541+4i41-982-i829+14410-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.5.2
Add 9 and 14.
[-541+4i41-982-i8223410-3i410+21i205(3410+7i205)(-3-3i)]
[-541+4i41-982-i8223410-3i410+21i205(3410+7i205)(-3-3i)]
Step 16.8.6
To write 21i205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-982-i8223410-3i410+21i20522(3410+7i205)(-3-3i)]
Step 16.8.7
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 16.8.7.1
Multiply 21i205 by 22.
[-541+4i41-982-i8223410-3i410+21i22052(3410+7i205)(-3-3i)]
Step 16.8.7.2
Multiply 205 by 2.
[-541+4i41-982-i8223410-3i410+21i2410(3410+7i205)(-3-3i)]
[-541+4i41-982-i8223410-3i410+21i2410(3410+7i205)(-3-3i)]
Step 16.8.8
Combine the numerators over the common denominator.
[-541+4i41-982-i8223410+39i410(3410+7i205)(-3-3i)]
[-541+4i41-982-i8223410+39i410(3410+7i205)(-3-3i)]
Step 16.9
Expand (3410+7i205)(-3-3i) using the FOIL Method.
Tap for more steps...
Step 16.9.1
Apply the distributive property.
[-541+4i41-982-i8223410+39i4103410(-3-3i)+7i205(-3-3i)]
Step 16.9.2
Apply the distributive property.
[-541+4i41-982-i8223410+39i4103410-3+3410(-3i)+7i205(-3-3i)]
Step 16.9.3
Apply the distributive property.
[-541+4i41-982-i8223410+39i4103410-3+3410(-3i)+7i205-3+7i205(-3i)]
[-541+4i41-982-i8223410+39i4103410-3+3410(-3i)+7i205-3+7i205(-3i)]
Step 16.10
Simplify and combine like terms.
Tap for more steps...
Step 16.10.1
Simplify each term.
Tap for more steps...
Step 16.10.1.1
Multiply 3410-3.
Tap for more steps...
Step 16.10.1.1.1
Combine 3410 and -3.
[-541+4i41-982-i8223410+39i4103-3410+3410(-3i)+7i205-3+7i205(-3i)]
Step 16.10.1.1.2
Multiply 3 by -3.
[-541+4i41-982-i8223410+39i410-9410+3410(-3i)+7i205-3+7i205(-3i)]
[-541+4i41-982-i8223410+39i410-9410+3410(-3i)+7i205-3+7i205(-3i)]
Step 16.10.1.2
Move the negative in front of the fraction.
[-541+4i41-982-i8223410+39i410-9410+3410(-3i)+7i205-3+7i205(-3i)]
Step 16.10.1.3
Multiply 3410(-3i).
Tap for more steps...
Step 16.10.1.3.1
Combine -3 and 3410.
[-541+4i41-982-i8223410+39i410-9410+-33410i+7i205-3+7i205(-3i)]
Step 16.10.1.3.2
Multiply -3 by 3.
[-541+4i41-982-i8223410+39i410-9410+-9410i+7i205-3+7i205(-3i)]
Step 16.10.1.3.3
Combine -9410 and i.
[-541+4i41-982-i8223410+39i410-9410+-9i410+7i205-3+7i205(-3i)]
[-541+4i41-982-i8223410+39i410-9410+-9i410+7i205-3+7i205(-3i)]
Step 16.10.1.4
Move the negative in front of the fraction.
[-541+4i41-982-i8223410+39i410-9410-9i410+7i205-3+7i205(-3i)]
Step 16.10.1.5
Multiply 7i205-3.
Tap for more steps...
Step 16.10.1.5.1
Combine 7i205 and -3.
[-541+4i41-982-i8223410+39i410-9410-9i410+7i-3205+7i205(-3i)]
Step 16.10.1.5.2
Multiply -3 by 7.
[-541+4i41-982-i8223410+39i410-9410-9i410+-21i205+7i205(-3i)]
[-541+4i41-982-i8223410+39i410-9410-9i410+-21i205+7i205(-3i)]
Step 16.10.1.6
Move the negative in front of the fraction.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+7i205(-3i)]
Step 16.10.1.7
Multiply 7i205(-3i).
Tap for more steps...
Step 16.10.1.7.1
Combine -3 and 7i205.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-3(7i)205i]
Step 16.10.1.7.2
Multiply 7 by -3.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21i205i]
Step 16.10.1.7.3
Combine -21i205 and i.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21ii205]
Step 16.10.1.7.4
Raise i to the power of 1.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21(i1i)205]
Step 16.10.1.7.5
Raise i to the power of 1.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21(i1i1)205]
Step 16.10.1.7.6
Use the power rule aman=am+n to combine exponents.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21i1+1205]
Step 16.10.1.7.7
Add 1 and 1.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21i2205]
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21i2205]
Step 16.10.1.8
Rewrite i2 as -1.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+-21-1205]
Step 16.10.1.9
Multiply -21 by -1.
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+21205]
[-541+4i41-982-i8223410+39i410-9410-9i410-21i205+21205]
Step 16.10.2
To write 21205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-982-i8223410+39i410-9410+2120522-9i410-21i205]
Step 16.10.3
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 16.10.3.1
Multiply 21205 by 22.
[-541+4i41-982-i8223410+39i410-9410+2122052-9i410-21i205]
Step 16.10.3.2
Multiply 205 by 2.
[-541+4i41-982-i8223410+39i410-9410+212410-9i410-21i205]
[-541+4i41-982-i8223410+39i410-9410+212410-9i410-21i205]
Step 16.10.4
Combine the numerators over the common denominator.
[-541+4i41-982-i8223410+39i410-9+212410-9i410-21i205]
Step 16.10.5
Simplify the numerator.
Tap for more steps...
Step 16.10.5.1
Multiply 21 by 2.
[-541+4i41-982-i8223410+39i410-9+42410-9i410-21i205]
Step 16.10.5.2
Add -9 and 42.
[-541+4i41-982-i8223410+39i41033410-9i410-21i205]
[-541+4i41-982-i8223410+39i41033410-9i410-21i205]
Step 16.10.6
To write -21i205 as a fraction with a common denominator, multiply by 22.
[-541+4i41-982-i8223410+39i41033410-9i410-21i20522]
Step 16.10.7
Write each expression with a common denominator of 410, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 16.10.7.1
Multiply 21i205 by 22.
[-541+4i41-982-i8223410+39i41033410-9i410-21i22052]
Step 16.10.7.2
Multiply 205 by 2.
[-541+4i41-982-i8223410+39i41033410-9i410-21i2410]
[-541+4i41-982-i8223410+39i41033410-9i410-21i2410]
Step 16.10.8
Combine the numerators over the common denominator.
[-541+4i41-982-i8223410+39i41033410+-51i410]
[-541+4i41-982-i8223410+39i41033410+-51i410]
Step 16.11
Move the negative in front of the fraction.
[-541+4i41-982-i8223410+39i41033410-51i410]
[-541+4i41-982-i8223410+39i41033410-51i410]
 [x2  12  π  xdx ]