Enter a problem...
Linear Algebra Examples
Step 1
Add and .
Step 2
Reorder factors in .
Step 3
Step 3.1
Consider the corresponding sign chart.
Step 3.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 3.3
The minor for is the determinant with row and column deleted.
Step 3.4
Multiply element by its cofactor.
Step 3.5
The minor for is the determinant with row and column deleted.
Step 3.6
Multiply element by its cofactor.
Step 3.7
The minor for is the determinant with row and column deleted.
Step 3.8
Multiply element by its cofactor.
Step 3.9
Add the terms together.
Step 4
Step 4.1
The determinant of a matrix can be found using the formula .
Step 4.2
Simplify the determinant.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Expand using the FOIL Method.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Apply the distributive property.
Step 4.2.1.1.3
Apply the distributive property.
Step 4.2.1.2
Simplify each term.
Step 4.2.1.2.1
Rewrite using the commutative property of multiplication.
Step 4.2.1.2.2
Multiply by by adding the exponents.
Step 4.2.1.2.2.1
Move .
Step 4.2.1.2.2.2
Use the power rule to combine exponents.
Step 4.2.1.2.2.3
Add and .
Step 4.2.1.2.3
Multiply by by adding the exponents.
Step 4.2.1.2.3.1
Move .
Step 4.2.1.2.3.2
Use the power rule to combine exponents.
Step 4.2.1.2.3.3
Add and .
Step 4.2.1.2.4
Rewrite using the commutative property of multiplication.
Step 4.2.1.2.5
Multiply by by adding the exponents.
Step 4.2.1.2.5.1
Move .
Step 4.2.1.2.5.2
Use the power rule to combine exponents.
Step 4.2.1.2.5.3
Add and .
Step 4.2.1.2.6
Multiply by by adding the exponents.
Step 4.2.1.2.6.1
Move .
Step 4.2.1.2.6.2
Multiply by .
Step 4.2.1.2.6.2.1
Raise to the power of .
Step 4.2.1.2.6.2.2
Use the power rule to combine exponents.
Step 4.2.1.2.6.3
Add and .
Step 4.2.1.2.7
Multiply by by adding the exponents.
Step 4.2.1.2.7.1
Move .
Step 4.2.1.2.7.2
Use the power rule to combine exponents.
Step 4.2.1.2.7.3
Add and .
Step 4.2.1.3
Apply the distributive property.
Step 4.2.1.4
Multiply by .
Step 4.2.1.5
Expand using the FOIL Method.
Step 4.2.1.5.1
Apply the distributive property.
Step 4.2.1.5.2
Apply the distributive property.
Step 4.2.1.5.3
Apply the distributive property.
Step 4.2.1.6
Simplify and combine like terms.
Step 4.2.1.6.1
Simplify each term.
Step 4.2.1.6.1.1
Multiply by by adding the exponents.
Step 4.2.1.6.1.1.1
Move .
Step 4.2.1.6.1.1.2
Use the power rule to combine exponents.
Step 4.2.1.6.1.1.3
Add and .
Step 4.2.1.6.1.2
Rewrite using the commutative property of multiplication.
Step 4.2.1.6.1.3
Multiply by .
Step 4.2.1.6.1.4
Multiply by by adding the exponents.
Step 4.2.1.6.1.4.1
Move .
Step 4.2.1.6.1.4.2
Use the power rule to combine exponents.
Step 4.2.1.6.1.4.3
Add and .
Step 4.2.1.6.1.5
Multiply by by adding the exponents.
Step 4.2.1.6.1.5.1
Move .
Step 4.2.1.6.1.5.2
Multiply by .
Step 4.2.1.6.1.6
Multiply by by adding the exponents.
Step 4.2.1.6.1.6.1
Move .
Step 4.2.1.6.1.6.2
Use the power rule to combine exponents.
Step 4.2.1.6.1.6.3
Add and .
Step 4.2.1.6.1.7
Multiply by .
Step 4.2.1.6.1.8
Multiply by by adding the exponents.
Step 4.2.1.6.1.8.1
Move .
Step 4.2.1.6.1.8.2
Multiply by .
Step 4.2.1.6.1.8.2.1
Raise to the power of .
Step 4.2.1.6.1.8.2.2
Use the power rule to combine exponents.
Step 4.2.1.6.1.8.3
Add and .
Step 4.2.1.6.1.9
Multiply by by adding the exponents.
Step 4.2.1.6.1.9.1
Move .
Step 4.2.1.6.1.9.2
Use the power rule to combine exponents.
Step 4.2.1.6.1.9.3
Add and .
Step 4.2.1.6.2
Subtract from .
Step 4.2.1.6.2.1
Move .
Step 4.2.1.6.2.2
Subtract from .
Step 4.2.2
Combine the opposite terms in .
Step 4.2.2.1
Subtract from .
Step 4.2.2.2
Add and .
Step 4.2.3
Subtract from .
Step 4.2.3.1
Reorder and .
Step 4.2.3.2
Subtract from .
Step 4.2.4
Subtract from .
Step 4.2.4.1
Move .
Step 4.2.4.2
Subtract from .
Step 5
Step 5.1
The determinant of a matrix can be found using the formula .
Step 5.2
Simplify the determinant.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Multiply by .
Step 5.2.1.2
Multiply by .
Step 5.2.2
Add and .
Step 6
Step 6.1
The determinant of a matrix can be found using the formula .
Step 6.2
Simplify the determinant.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Multiply by .
Step 6.2.1.2
Multiply by .
Step 6.2.2
Add and .
Step 7
Step 7.1
Simplify each term.
Step 7.1.1
Apply the distributive property.
Step 7.1.2
Simplify.
Step 7.1.2.1
Rewrite using the commutative property of multiplication.
Step 7.1.2.2
Rewrite using the commutative property of multiplication.
Step 7.1.2.3
Rewrite using the commutative property of multiplication.
Step 7.1.3
Simplify each term.
Step 7.1.3.1
Multiply by by adding the exponents.
Step 7.1.3.1.1
Move .
Step 7.1.3.1.2
Multiply by .
Step 7.1.3.1.2.1
Raise to the power of .
Step 7.1.3.1.2.2
Use the power rule to combine exponents.
Step 7.1.3.1.3
Add and .
Step 7.1.3.2
Multiply by by adding the exponents.
Step 7.1.3.2.1
Move .
Step 7.1.3.2.2
Multiply by .
Step 7.1.4
Apply the distributive property.
Step 7.1.5
Multiply by by adding the exponents.
Step 7.1.5.1
Move .
Step 7.1.5.2
Use the power rule to combine exponents.
Step 7.1.5.3
Add and .
Step 7.1.6
Multiply by by adding the exponents.
Step 7.1.6.1
Move .
Step 7.1.6.2
Multiply by .
Step 7.1.6.2.1
Raise to the power of .
Step 7.1.6.2.2
Use the power rule to combine exponents.
Step 7.1.6.3
Add and .
Step 7.1.7
Simplify each term.
Step 7.1.7.1
Multiply by .
Step 7.1.7.2
Multiply by by adding the exponents.
Step 7.1.7.2.1
Move .
Step 7.1.7.2.2
Use the power rule to combine exponents.
Step 7.1.7.2.3
Add and .
Step 7.1.8
Apply the distributive property.
Step 7.1.9
Rewrite using the commutative property of multiplication.
Step 7.1.10
Multiply by by adding the exponents.
Step 7.1.10.1
Move .
Step 7.1.10.2
Multiply by .
Step 7.1.10.2.1
Raise to the power of .
Step 7.1.10.2.2
Use the power rule to combine exponents.
Step 7.1.10.3
Add and .
Step 7.1.11
Simplify each term.
Step 7.1.11.1
Multiply by by adding the exponents.
Step 7.1.11.1.1
Move .
Step 7.1.11.1.2
Use the power rule to combine exponents.
Step 7.1.11.1.3
Add and .
Step 7.1.11.2
Multiply by by adding the exponents.
Step 7.1.11.2.1
Move .
Step 7.1.11.2.2
Use the power rule to combine exponents.
Step 7.1.11.2.3
Add and .
Step 7.2
Combine the opposite terms in .
Step 7.2.1
Subtract from .
Step 7.2.2
Add and .
Step 7.2.3
Add and .
Step 7.2.4
Add and .
Step 7.3
Add and .