Linear Algebra Examples

Find the Inverse [[-e^t,1],[e^t,e^(-t)]]
[-et1ete-t]
Step 1
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
Step 2
Find the determinant.
Tap for more steps...
Step 2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-ete-t-et1
Step 2.2
Simplify each term.
Tap for more steps...
Step 2.2.1
Multiply et by e-t by adding the exponents.
Tap for more steps...
Step 2.2.1.1
Move e-t.
-(e-tet)-et1
Step 2.2.1.2
Use the power rule aman=am+n to combine exponents.
-e-t+t-et1
Step 2.2.1.3
Add -t and t.
-e0-et1
-e0-et1
Step 2.2.2
Simplify -e0.
-1-et1
Step 2.2.3
Multiply -1 by 1.
-1-et
-1-et
-1-et
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
1-1-et[e-t-1-et-et]
Step 5
Rewrite -1 as -1(1).
1-1(1)-et[e-t-1-et-et]
Step 6
Factor -1 out of -et.
1-1(1)-(et)[e-t-1-et-et]
Step 7
Factor -1 out of -1(1)-(et).
1-1(1+et)[e-t-1-et-et]
Step 8
Move the negative in front of the fraction.
-11+et[e-t-1-et-et]
Step 9
Multiply -11+et by each element of the matrix.
[-11+ete-t-11+et-1-11+et(-et)-11+et(-et)]
Step 10
Simplify each element in the matrix.
Tap for more steps...
Step 10.1
Combine e-t and 11+et.
[-e-t1+et-11+et-1-11+et(-et)-11+et(-et)]
Step 10.2
Multiply -11+et-1.
Tap for more steps...
Step 10.2.1
Multiply -1 by -1.
[-e-t1+et111+et-11+et(-et)-11+et(-et)]
Step 10.2.2
Multiply 11+et by 1.
[-e-t1+et11+et-11+et(-et)-11+et(-et)]
[-e-t1+et11+et-11+et(-et)-11+et(-et)]
Step 10.3
Multiply -11+et(-et).
Tap for more steps...
Step 10.3.1
Multiply -1 by -1.
[-e-t1+et11+et111+etet-11+et(-et)]
Step 10.3.2
Multiply 11+et by 1.
[-e-t1+et11+et11+etet-11+et(-et)]
Step 10.3.3
Combine 11+et and et.
[-e-t1+et11+etet1+et-11+et(-et)]
[-e-t1+et11+etet1+et-11+et(-et)]
Step 10.4
Multiply -11+et(-et).
Tap for more steps...
Step 10.4.1
Multiply -1 by -1.
[-e-t1+et11+etet1+et111+etet]
Step 10.4.2
Multiply 11+et by 1.
[-e-t1+et11+etet1+et11+etet]
Step 10.4.3
Combine 11+et and et.
[-e-t1+et11+etet1+etet1+et]
[-e-t1+et11+etet1+etet1+et]
[-e-t1+et11+etet1+etet1+et]
 [x2  12  π  xdx ]