Enter a problem...
Linear Algebra Examples
[-14-161343][−14−161343]
Step 1
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
Step 2
Step 2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-14⋅43-13(-16)
Step 2.2
Simplify the determinant.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Cancel the common factor of 4.
Step 2.2.1.1.1
Move the leading negative in -14 into the numerator.
-14⋅43-13(-16)
Step 2.2.1.1.2
Cancel the common factor.
-14⋅43-13(-16)
Step 2.2.1.1.3
Rewrite the expression.
-13-13(-16)
-13-13(-16)
Step 2.2.1.2
Multiply -13(-16).
Step 2.2.1.2.1
Multiply -1 by -1.
-13+1(13)16
Step 2.2.1.2.2
Multiply 13 by 1.
-13+13⋅16
Step 2.2.1.2.3
Multiply 13 by 16.
-13+13⋅6
Step 2.2.1.2.4
Multiply 3 by 6.
-13+118
-13+118
-13+118
Step 2.2.2
To write -13 as a fraction with a common denominator, multiply by 66.
-13⋅66+118
Step 2.2.3
Write each expression with a common denominator of 18, by multiplying each by an appropriate factor of 1.
Step 2.2.3.1
Multiply 13 by 66.
-63⋅6+118
Step 2.2.3.2
Multiply 3 by 6.
-618+118
-618+118
Step 2.2.4
Combine the numerators over the common denominator.
-6+118
Step 2.2.5
Add -6 and 1.
-518
Step 2.2.6
Move the negative in front of the fraction.
-518
-518
-518
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
1-518[4316-13-14]
Step 5
Step 5.1
Rewrite 1 as -1(-1).
-1(-1)-518[4316-13-14]
Step 5.2
Move the negative in front of the fraction.
-1518[4316-13-14]
-1518[4316-13-14]
Step 6
Multiply the numerator by the reciprocal of the denominator.
-(1(185))[4316-13-14]
Step 7
Multiply 185 by 1.
-185[4316-13-14]
Step 8
Multiply -185 by each element of the matrix.
[-185⋅43-185⋅16-185(-13)-185(-14)]
Step 9
Step 9.1
Cancel the common factor of 3.
Step 9.1.1
Move the leading negative in -185 into the numerator.
[-185⋅43-185⋅16-185(-13)-185(-14)]
Step 9.1.2
Factor 3 out of -18.
[3(-6)5⋅43-185⋅16-185(-13)-185(-14)]
Step 9.1.3
Cancel the common factor.
[3⋅-65⋅43-185⋅16-185(-13)-185(-14)]
Step 9.1.4
Rewrite the expression.
[-65⋅4-185⋅16-185(-13)-185(-14)]
[-65⋅4-185⋅16-185(-13)-185(-14)]
Step 9.2
Combine -65 and 4.
[-6⋅45-185⋅16-185(-13)-185(-14)]
Step 9.3
Multiply -6 by 4.
[-245-185⋅16-185(-13)-185(-14)]
Step 9.4
Move the negative in front of the fraction.
[-245-185⋅16-185(-13)-185(-14)]
Step 9.5
Cancel the common factor of 6.
Step 9.5.1
Move the leading negative in -185 into the numerator.
[-245-185⋅16-185(-13)-185(-14)]
Step 9.5.2
Factor 6 out of -18.
[-2456(-3)5⋅16-185(-13)-185(-14)]
Step 9.5.3
Cancel the common factor.
[-2456⋅-35⋅16-185(-13)-185(-14)]
Step 9.5.4
Rewrite the expression.
[-245-35-185(-13)-185(-14)]
[-245-35-185(-13)-185(-14)]
Step 9.6
Move the negative in front of the fraction.
[-245-35-185(-13)-185(-14)]
Step 9.7
Cancel the common factor of 3.
Step 9.7.1
Move the leading negative in -185 into the numerator.
[-245-35-185(-13)-185(-14)]
Step 9.7.2
Move the leading negative in -13 into the numerator.
[-245-35-185⋅-13-185(-14)]
Step 9.7.3
Factor 3 out of -18.
[-245-353(-6)5⋅-13-185(-14)]
Step 9.7.4
Cancel the common factor.
[-245-353⋅-65⋅-13-185(-14)]
Step 9.7.5
Rewrite the expression.
[-245-35-65⋅-1-185(-14)]
[-245-35-65⋅-1-185(-14)]
Step 9.8
Combine -65 and -1.
[-245-35-6⋅-15-185(-14)]
Step 9.9
Multiply -6 by -1.
[-245-3565-185(-14)]
Step 9.10
Cancel the common factor of 2.
Step 9.10.1
Move the leading negative in -185 into the numerator.
[-245-3565-185(-14)]
Step 9.10.2
Move the leading negative in -14 into the numerator.
[-245-3565-185⋅-14]
Step 9.10.3
Factor 2 out of -18.
[-245-35652(-9)5⋅-14]
Step 9.10.4
Factor 2 out of 4.
[-245-35652⋅-95⋅-12⋅2]
Step 9.10.5
Cancel the common factor.
[-245-35652⋅-95⋅-12⋅2]
Step 9.10.6
Rewrite the expression.
[-245-3565-95⋅-12]
[-245-3565-95⋅-12]
Step 9.11
Multiply -95 by -12.
[-245-3565-9⋅-15⋅2]
Step 9.12
Multiply -9 by -1.
[-245-356595⋅2]
Step 9.13
Multiply 5 by 2.
[-245-3565910]
[-245-3565910]