Linear Algebra Examples

Find the Inverse [[-1/4,-1/6],[1/3,4/3]]
[-14-161343][14161343]
Step 1
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
Step 2
Find the determinant.
Tap for more steps...
Step 2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1443-13(-16)
Step 2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Cancel the common factor of 4.
Tap for more steps...
Step 2.2.1.1.1
Move the leading negative in -14 into the numerator.
-1443-13(-16)
Step 2.2.1.1.2
Cancel the common factor.
-1443-13(-16)
Step 2.2.1.1.3
Rewrite the expression.
-13-13(-16)
-13-13(-16)
Step 2.2.1.2
Multiply -13(-16).
Tap for more steps...
Step 2.2.1.2.1
Multiply -1 by -1.
-13+1(13)16
Step 2.2.1.2.2
Multiply 13 by 1.
-13+1316
Step 2.2.1.2.3
Multiply 13 by 16.
-13+136
Step 2.2.1.2.4
Multiply 3 by 6.
-13+118
-13+118
-13+118
Step 2.2.2
To write -13 as a fraction with a common denominator, multiply by 66.
-1366+118
Step 2.2.3
Write each expression with a common denominator of 18, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.2.3.1
Multiply 13 by 66.
-636+118
Step 2.2.3.2
Multiply 3 by 6.
-618+118
-618+118
Step 2.2.4
Combine the numerators over the common denominator.
-6+118
Step 2.2.5
Add -6 and 1.
-518
Step 2.2.6
Move the negative in front of the fraction.
-518
-518
-518
Step 3
Since the determinant is non-zero, the inverse exists.
Step 4
Substitute the known values into the formula for the inverse.
1-518[4316-13-14]
Step 5
Cancel the common factor of 1 and -1.
Tap for more steps...
Step 5.1
Rewrite 1 as -1(-1).
-1(-1)-518[4316-13-14]
Step 5.2
Move the negative in front of the fraction.
-1518[4316-13-14]
-1518[4316-13-14]
Step 6
Multiply the numerator by the reciprocal of the denominator.
-(1(185))[4316-13-14]
Step 7
Multiply 185 by 1.
-185[4316-13-14]
Step 8
Multiply -185 by each element of the matrix.
[-18543-18516-185(-13)-185(-14)]
Step 9
Simplify each element in the matrix.
Tap for more steps...
Step 9.1
Cancel the common factor of 3.
Tap for more steps...
Step 9.1.1
Move the leading negative in -185 into the numerator.
[-18543-18516-185(-13)-185(-14)]
Step 9.1.2
Factor 3 out of -18.
[3(-6)543-18516-185(-13)-185(-14)]
Step 9.1.3
Cancel the common factor.
[3-6543-18516-185(-13)-185(-14)]
Step 9.1.4
Rewrite the expression.
[-654-18516-185(-13)-185(-14)]
[-654-18516-185(-13)-185(-14)]
Step 9.2
Combine -65 and 4.
[-645-18516-185(-13)-185(-14)]
Step 9.3
Multiply -6 by 4.
[-245-18516-185(-13)-185(-14)]
Step 9.4
Move the negative in front of the fraction.
[-245-18516-185(-13)-185(-14)]
Step 9.5
Cancel the common factor of 6.
Tap for more steps...
Step 9.5.1
Move the leading negative in -185 into the numerator.
[-245-18516-185(-13)-185(-14)]
Step 9.5.2
Factor 6 out of -18.
[-2456(-3)516-185(-13)-185(-14)]
Step 9.5.3
Cancel the common factor.
[-2456-3516-185(-13)-185(-14)]
Step 9.5.4
Rewrite the expression.
[-245-35-185(-13)-185(-14)]
[-245-35-185(-13)-185(-14)]
Step 9.6
Move the negative in front of the fraction.
[-245-35-185(-13)-185(-14)]
Step 9.7
Cancel the common factor of 3.
Tap for more steps...
Step 9.7.1
Move the leading negative in -185 into the numerator.
[-245-35-185(-13)-185(-14)]
Step 9.7.2
Move the leading negative in -13 into the numerator.
[-245-35-185-13-185(-14)]
Step 9.7.3
Factor 3 out of -18.
[-245-353(-6)5-13-185(-14)]
Step 9.7.4
Cancel the common factor.
[-245-353-65-13-185(-14)]
Step 9.7.5
Rewrite the expression.
[-245-35-65-1-185(-14)]
[-245-35-65-1-185(-14)]
Step 9.8
Combine -65 and -1.
[-245-35-6-15-185(-14)]
Step 9.9
Multiply -6 by -1.
[-245-3565-185(-14)]
Step 9.10
Cancel the common factor of 2.
Tap for more steps...
Step 9.10.1
Move the leading negative in -185 into the numerator.
[-245-3565-185(-14)]
Step 9.10.2
Move the leading negative in -14 into the numerator.
[-245-3565-185-14]
Step 9.10.3
Factor 2 out of -18.
[-245-35652(-9)5-14]
Step 9.10.4
Factor 2 out of 4.
[-245-35652-95-122]
Step 9.10.5
Cancel the common factor.
[-245-35652-95-122]
Step 9.10.6
Rewrite the expression.
[-245-3565-95-12]
[-245-3565-95-12]
Step 9.11
Multiply -95 by -12.
[-245-3565-9-152]
Step 9.12
Multiply -9 by -1.
[-245-3565952]
Step 9.13
Multiply 5 by 2.
[-245-3565910]
[-245-3565910]
 [x2  12  π  xdx ]