Linear Algebra Examples

Find the Inverse [[1/( square root of 5),-14/( square root of 205)],[2/( square root of 5),-3/( square root of 205)]]
[15-1420525-3205]1514205253205
Step 1
Multiply 15 by 55.
[1555-1420525-3205]
Step 2
Combine and simplify the denominator.
Tap for more steps...
Step 2.1
Multiply 15 by 55.
[555-1420525-3205]
Step 2.2
Raise 5 to the power of 1.
[5515-1420525-3205]
Step 2.3
Raise 5 to the power of 1.
[55151-1420525-3205]
Step 2.4
Use the power rule aman=am+n to combine exponents.
[551+1-1420525-3205]
Step 2.5
Add 1 and 1.
[552-1420525-3205]
Step 2.6
Rewrite 52 as 5.
Tap for more steps...
Step 2.6.1
Use nax=axn to rewrite 5 as 512.
[5(512)2-1420525-3205]
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[55122-1420525-3205]
Step 2.6.3
Combine 12 and 2.
[5522-1420525-3205]
Step 2.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.6.4.1
Cancel the common factor.
[5522-1420525-3205]
Step 2.6.4.2
Rewrite the expression.
[551-1420525-3205]
[551-1420525-3205]
Step 2.6.5
Evaluate the exponent.
[55-1420525-3205]
[55-1420525-3205]
[55-1420525-3205]
Step 3
Multiply 14205 by 205205.
[55-(14205205205)25-3205]
Step 4
Combine and simplify the denominator.
Tap for more steps...
Step 4.1
Multiply 14205 by 205205.
[55-1420520520525-3205]
Step 4.2
Raise 205 to the power of 1.
[55-14205205120525-3205]
Step 4.3
Raise 205 to the power of 1.
[55-142052051205125-3205]
Step 4.4
Use the power rule aman=am+n to combine exponents.
[55-142052051+125-3205]
Step 4.5
Add 1 and 1.
[55-14205205225-3205]
Step 4.6
Rewrite 2052 as 205.
Tap for more steps...
Step 4.6.1
Use nax=axn to rewrite 205 as 20512.
[55-14205(20512)225-3205]
Step 4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[55-1420520512225-3205]
Step 4.6.3
Combine 12 and 2.
[55-142052052225-3205]
Step 4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.6.4.1
Cancel the common factor.
[55-142052052225-3205]
Step 4.6.4.2
Rewrite the expression.
[55-14205205125-3205]
[55-14205205125-3205]
Step 4.6.5
Evaluate the exponent.
[55-1420520525-3205]
[55-1420520525-3205]
[55-1420520525-3205]
Step 5
Multiply 25 by 55.
[55-142052052555-3205]
Step 6
Combine and simplify the denominator.
Tap for more steps...
Step 6.1
Multiply 25 by 55.
[55-142052052555-3205]
Step 6.2
Raise 5 to the power of 1.
[55-1420520525515-3205]
Step 6.3
Raise 5 to the power of 1.
[55-14205205255151-3205]
Step 6.4
Use the power rule aman=am+n to combine exponents.
[55-142052052551+1-3205]
Step 6.5
Add 1 and 1.
[55-142052052552-3205]
Step 6.6
Rewrite 52 as 5.
Tap for more steps...
Step 6.6.1
Use nax=axn to rewrite 5 as 512.
[55-1420520525(512)2-3205]
Step 6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[55-14205205255122-3205]
Step 6.6.3
Combine 12 and 2.
[55-1420520525522-3205]
Step 6.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.6.4.1
Cancel the common factor.
[55-1420520525522-3205]
Step 6.6.4.2
Rewrite the expression.
[55-142052052551-3205]
[55-142052052551-3205]
Step 6.6.5
Evaluate the exponent.
[55-14205205255-3205]
[55-14205205255-3205]
[55-14205205255-3205]
Step 7
Multiply 3205 by 205205.
[55-14205205255-(3205205205)]
Step 8
Combine and simplify the denominator.
Tap for more steps...
Step 8.1
Multiply 3205 by 205205.
[55-14205205255-3205205205]
Step 8.2
Raise 205 to the power of 1.
[55-14205205255-32052051205]
Step 8.3
Raise 205 to the power of 1.
[55-14205205255-320520512051]
Step 8.4
Use the power rule aman=am+n to combine exponents.
[55-14205205255-32052051+1]
Step 8.5
Add 1 and 1.
[55-14205205255-32052052]
Step 8.6
Rewrite 2052 as 205.
Tap for more steps...
Step 8.6.1
Use nax=axn to rewrite 205 as 20512.
[55-14205205255-3205(20512)2]
Step 8.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[55-14205205255-3205205122]
Step 8.6.3
Combine 12 and 2.
[55-14205205255-320520522]
Step 8.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.6.4.1
Cancel the common factor.
[55-14205205255-320520522]
Step 8.6.4.2
Rewrite the expression.
[55-14205205255-32052051]
[55-14205205255-32052051]
Step 8.6.5
Evaluate the exponent.
[55-14205205255-3205205]
[55-14205205255-3205205]
[55-14205205255-3205205]
Step 9
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
Step 10
Find the determinant.
Tap for more steps...
Step 10.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
55(-3205205)-255(-14205205)
Step 10.2
Simplify the determinant.
Tap for more steps...
Step 10.2.1
Simplify each term.
Tap for more steps...
Step 10.2.1.1
Multiply 55(-3205205).
Tap for more steps...
Step 10.2.1.1.1
Multiply 55 by 3205205.
-5(3205)5205-255(-14205205)
Step 10.2.1.1.2
Combine using the product rule for radicals.
-352055205-255(-14205205)
Step 10.2.1.1.3
Multiply 5 by 205.
-310255205-255(-14205205)
Step 10.2.1.1.4
Multiply 5 by 205.
-310251025-255(-14205205)
-310251025-255(-14205205)
Step 10.2.1.2
Simplify the numerator.
Tap for more steps...
Step 10.2.1.2.1
Rewrite 1025 as 5241.
Tap for more steps...
Step 10.2.1.2.1.1
Factor 25 out of 1025.
-325(41)1025-255(-14205205)
Step 10.2.1.2.1.2
Rewrite 25 as 52.
-352411025-255(-14205205)
-352411025-255(-14205205)
Step 10.2.1.2.2
Pull terms out from under the radical.
-35411025-255(-14205205)
Step 10.2.1.2.3
Multiply 3 by 5.
-15411025-255(-14205205)
-15411025-255(-14205205)
Step 10.2.1.3
Cancel the common factor of 15 and 1025.
Tap for more steps...
Step 10.2.1.3.1
Factor 5 out of 1541.
-5(341)1025-255(-14205205)
Step 10.2.1.3.2
Cancel the common factors.
Tap for more steps...
Step 10.2.1.3.2.1
Factor 5 out of 1025.
-5(341)5(205)-255(-14205205)
Step 10.2.1.3.2.2
Cancel the common factor.
-5(341)5205-255(-14205205)
Step 10.2.1.3.2.3
Rewrite the expression.
-341205-255(-14205205)
-341205-255(-14205205)
-341205-255(-14205205)
Step 10.2.1.4
Multiply -255(-14205205).
Tap for more steps...
Step 10.2.1.4.1
Multiply -1 by -1.
-341205+125514205205
Step 10.2.1.4.2
Multiply 255 by 1.
-341205+25514205205
Step 10.2.1.4.3
Multiply 255 by 14205205.
-341205+25(14205)5205
Step 10.2.1.4.4
Multiply 14 by 2.
-341205+2852055205
Step 10.2.1.4.5
Combine using the product rule for radicals.
-341205+2820555205
Step 10.2.1.4.6
Multiply 205 by 5.
-341205+2810255205
Step 10.2.1.4.7
Multiply 5 by 205.
-341205+2810251025
-341205+2810251025
Step 10.2.1.5
Simplify the numerator.
Tap for more steps...
Step 10.2.1.5.1
Rewrite 1025 as 5241.
Tap for more steps...
Step 10.2.1.5.1.1
Factor 25 out of 1025.
-341205+2825(41)1025
Step 10.2.1.5.1.2
Rewrite 25 as 52.
-341205+2852411025
-341205+2852411025
Step 10.2.1.5.2
Pull terms out from under the radical.
-341205+285411025
Step 10.2.1.5.3
Multiply 28 by 5.
-341205+140411025
-341205+140411025
Step 10.2.1.6
Cancel the common factor of 140 and 1025.
Tap for more steps...
Step 10.2.1.6.1
Factor 5 out of 14041.
-341205+5(2841)1025
Step 10.2.1.6.2
Cancel the common factors.
Tap for more steps...
Step 10.2.1.6.2.1
Factor 5 out of 1025.
-341205+5(2841)5(205)
Step 10.2.1.6.2.2
Cancel the common factor.
-341205+5(2841)5205
Step 10.2.1.6.2.3
Rewrite the expression.
-341205+2841205
-341205+2841205
-341205+2841205
-341205+2841205
Step 10.2.2
Combine the numerators over the common denominator.
-341+2841205
Step 10.2.3
Add -341 and 2841.
2541205
Step 10.2.4
Cancel the common factor of 25 and 205.
Tap for more steps...
Step 10.2.4.1
Factor 5 out of 2541.
5(541)205
Step 10.2.4.2
Cancel the common factors.
Tap for more steps...
Step 10.2.4.2.1
Factor 5 out of 205.
5(541)5(41)
Step 10.2.4.2.2
Cancel the common factor.
5(541)541
Step 10.2.4.2.3
Rewrite the expression.
54141
54141
54141
54141
54141
Step 11
Since the determinant is non-zero, the inverse exists.
Step 12
Substitute the known values into the formula for the inverse.
154141[-320520514205205-25555]
Step 13
Multiply the numerator by the reciprocal of the denominator.
141541[-320520514205205-25555]
Step 14
Multiply 41541 by 1.
41541[-320520514205205-25555]
Step 15
Multiply 41541 by 4141.
415414141[-320520514205205-25555]
Step 16
Combine and simplify the denominator.
Tap for more steps...
Step 16.1
Multiply 41541 by 4141.
414154141[-320520514205205-25555]
Step 16.2
Move 41.
41415(4141)[-320520514205205-25555]
Step 16.3
Raise 41 to the power of 1.
41415(41141)[-320520514205205-25555]
Step 16.4
Raise 41 to the power of 1.
41415(411411)[-320520514205205-25555]
Step 16.5
Use the power rule aman=am+n to combine exponents.
41415411+1[-320520514205205-25555]
Step 16.6
Add 1 and 1.
41415412[-320520514205205-25555]
Step 16.7
Rewrite 412 as 41.
Tap for more steps...
Step 16.7.1
Use nax=axn to rewrite 41 as 4112.
41415(4112)2[-320520514205205-25555]
Step 16.7.2
Apply the power rule and multiply exponents, (am)n=amn.
4141541122[-320520514205205-25555]
Step 16.7.3
Combine 12 and 2.
414154122[-320520514205205-25555]
Step 16.7.4
Cancel the common factor of 2.
Tap for more steps...
Step 16.7.4.1
Cancel the common factor.
414154122[-320520514205205-25555]
Step 16.7.4.2
Rewrite the expression.
41415411[-320520514205205-25555]
41415411[-320520514205205-25555]
Step 16.7.5
Evaluate the exponent.
4141541[-320520514205205-25555]
4141541[-320520514205205-25555]
4141541[-320520514205205-25555]
Step 17
Cancel the common factor of 41.
Tap for more steps...
Step 17.1
Cancel the common factor.
4141541[-320520514205205-25555]
Step 17.2
Rewrite the expression.
415[-320520514205205-25555]
415[-320520514205205-25555]
Step 18
Multiply 415 by each element of the matrix.
[415(-3205205)41514205205415(-255)41555]
Step 19
Simplify each element in the matrix.
Tap for more steps...
Step 19.1
Multiply 415(-3205205).
Tap for more steps...
Step 19.1.1
Multiply 415 by 3205205.
[-41(3205)520541514205205415(-255)41555]
Step 19.1.2
Combine using the product rule for radicals.
[-341205520541514205205415(-255)41555]
Step 19.1.3
Multiply 41 by 205.
[-38405520541514205205415(-255)41555]
Step 19.1.4
Multiply 5 by 205.
[-38405102541514205205415(-255)41555]
[-38405102541514205205415(-255)41555]
Step 19.2
Simplify the numerator.
Tap for more steps...
Step 19.2.1
Rewrite 8405 as 4125.
Tap for more steps...
Step 19.2.1.1
Factor 1681 out of 8405.
[-31681(5)102541514205205415(-255)41555]
Step 19.2.1.2
Rewrite 1681 as 412.
[-34125102541514205205415(-255)41555]
[-34125102541514205205415(-255)41555]
Step 19.2.2
Pull terms out from under the radical.
[-3415102541514205205415(-255)41555]
Step 19.2.3
Multiply 3 by 41.
[-1235102541514205205415(-255)41555]
[-1235102541514205205415(-255)41555]
Step 19.3
Cancel the common factor of 123 and 1025.
Tap for more steps...
Step 19.3.1
Factor 41 out of 1235.
[-41(35)102541514205205415(-255)41555]
Step 19.3.2
Cancel the common factors.
Tap for more steps...
Step 19.3.2.1
Factor 41 out of 1025.
[-41(35)41(25)41514205205415(-255)41555]
Step 19.3.2.2
Cancel the common factor.
[-41(35)412541514205205415(-255)41555]
Step 19.3.2.3
Rewrite the expression.
[-352541514205205415(-255)41555]
[-352541514205205415(-255)41555]
[-352541514205205415(-255)41555]
Step 19.4
Multiply 41514205205.
Tap for more steps...
Step 19.4.1
Multiply 415 by 14205205.
[-352541(14205)5205415(-255)41555]
Step 19.4.2
Combine using the product rule for radicals.
[-352514412055205415(-255)41555]
Step 19.4.3
Multiply 41 by 205.
[-35251484055205415(-255)41555]
Step 19.4.4
Multiply 5 by 205.
[-35251484051025415(-255)41555]
[-35251484051025415(-255)41555]
Step 19.5
Simplify the numerator.
Tap for more steps...
Step 19.5.1
Rewrite 8405 as 4125.
Tap for more steps...
Step 19.5.1.1
Factor 1681 out of 8405.
[-3525141681(5)1025415(-255)41555]
Step 19.5.1.2
Rewrite 1681 as 412.
[-35251441251025415(-255)41555]
[-35251441251025415(-255)41555]
Step 19.5.2
Pull terms out from under the radical.
[-3525144151025415(-255)41555]
Step 19.5.3
Multiply 14 by 41.
[-352557451025415(-255)41555]
[-352557451025415(-255)41555]
Step 19.6
Cancel the common factor of 574 and 1025.
Tap for more steps...
Step 19.6.1
Factor 41 out of 5745.
[-352541(145)1025415(-255)41555]
Step 19.6.2
Cancel the common factors.
Tap for more steps...
Step 19.6.2.1
Factor 41 out of 1025.
[-352541(145)41(25)415(-255)41555]
Step 19.6.2.2
Cancel the common factor.
[-352541(145)4125415(-255)41555]
Step 19.6.2.3
Rewrite the expression.
[-352514525415(-255)41555]
[-352514525415(-255)41555]
[-352514525415(-255)41555]
Step 19.7
Multiply 415(-255).
Tap for more steps...
Step 19.7.1
Multiply 415 by 255.
[-352514525-41(25)5541555]
Step 19.7.2
Combine using the product rule for radicals.
[-352514525-24155541555]
Step 19.7.3
Multiply 41 by 5.
[-352514525-22055541555]
Step 19.7.4
Multiply 5 by 5.
[-352514525-22052541555]
[-352514525-22052541555]
Step 19.8
Multiply 41555.
Tap for more steps...
Step 19.8.1
Multiply 415 by 55.
[-352514525-22052541555]
Step 19.8.2
Combine using the product rule for radicals.
[-352514525-22052541555]
Step 19.8.3
Multiply 41 by 5.
[-352514525-22052520555]
Step 19.8.4
Multiply 5 by 5.
[-352514525-22052520525]
[-352514525-22052520525]
[-352514525-22052520525]
 [x2  12  π  xdx ]