Enter a problem...
Linear Algebra Examples
[1√5-14√2052√5-3√205]⎡⎢⎣1√5−14√2052√5−3√205⎤⎥⎦
Step 1
Multiply 1√5 by √5√5.
[1√5⋅√5√5-14√2052√5-3√205]
Step 2
Step 2.1
Multiply 1√5 by √5√5.
[√5√5√5-14√2052√5-3√205]
Step 2.2
Raise √5 to the power of 1.
[√5√51√5-14√2052√5-3√205]
Step 2.3
Raise √5 to the power of 1.
[√5√51√51-14√2052√5-3√205]
Step 2.4
Use the power rule aman=am+n to combine exponents.
[√5√51+1-14√2052√5-3√205]
Step 2.5
Add 1 and 1.
[√5√52-14√2052√5-3√205]
Step 2.6
Rewrite √52 as 5.
Step 2.6.1
Use n√ax=axn to rewrite √5 as 512.
[√5(512)2-14√2052√5-3√205]
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[√5512⋅2-14√2052√5-3√205]
Step 2.6.3
Combine 12 and 2.
[√5522-14√2052√5-3√205]
Step 2.6.4
Cancel the common factor of 2.
Step 2.6.4.1
Cancel the common factor.
[√5522-14√2052√5-3√205]
Step 2.6.4.2
Rewrite the expression.
[√551-14√2052√5-3√205]
[√551-14√2052√5-3√205]
Step 2.6.5
Evaluate the exponent.
[√55-14√2052√5-3√205]
[√55-14√2052√5-3√205]
[√55-14√2052√5-3√205]
Step 3
Multiply 14√205 by √205√205.
[√55-(14√205⋅√205√205)2√5-3√205]
Step 4
Step 4.1
Multiply 14√205 by √205√205.
[√55-14√205√205√2052√5-3√205]
Step 4.2
Raise √205 to the power of 1.
[√55-14√205√2051√2052√5-3√205]
Step 4.3
Raise √205 to the power of 1.
[√55-14√205√2051√20512√5-3√205]
Step 4.4
Use the power rule aman=am+n to combine exponents.
[√55-14√205√2051+12√5-3√205]
Step 4.5
Add 1 and 1.
[√55-14√205√20522√5-3√205]
Step 4.6
Rewrite √2052 as 205.
Step 4.6.1
Use n√ax=axn to rewrite √205 as 20512.
[√55-14√205(20512)22√5-3√205]
Step 4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[√55-14√20520512⋅22√5-3√205]
Step 4.6.3
Combine 12 and 2.
[√55-14√205205222√5-3√205]
Step 4.6.4
Cancel the common factor of 2.
Step 4.6.4.1
Cancel the common factor.
[√55-14√205205222√5-3√205]
Step 4.6.4.2
Rewrite the expression.
[√55-14√20520512√5-3√205]
[√55-14√20520512√5-3√205]
Step 4.6.5
Evaluate the exponent.
[√55-14√2052052√5-3√205]
[√55-14√2052052√5-3√205]
[√55-14√2052052√5-3√205]
Step 5
Multiply 2√5 by √5√5.
[√55-14√2052052√5⋅√5√5-3√205]
Step 6
Step 6.1
Multiply 2√5 by √5√5.
[√55-14√2052052√5√5√5-3√205]
Step 6.2
Raise √5 to the power of 1.
[√55-14√2052052√5√51√5-3√205]
Step 6.3
Raise √5 to the power of 1.
[√55-14√2052052√5√51√51-3√205]
Step 6.4
Use the power rule aman=am+n to combine exponents.
[√55-14√2052052√5√51+1-3√205]
Step 6.5
Add 1 and 1.
[√55-14√2052052√5√52-3√205]
Step 6.6
Rewrite √52 as 5.
Step 6.6.1
Use n√ax=axn to rewrite √5 as 512.
[√55-14√2052052√5(512)2-3√205]
Step 6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[√55-14√2052052√5512⋅2-3√205]
Step 6.6.3
Combine 12 and 2.
[√55-14√2052052√5522-3√205]
Step 6.6.4
Cancel the common factor of 2.
Step 6.6.4.1
Cancel the common factor.
[√55-14√2052052√5522-3√205]
Step 6.6.4.2
Rewrite the expression.
[√55-14√2052052√551-3√205]
[√55-14√2052052√551-3√205]
Step 6.6.5
Evaluate the exponent.
[√55-14√2052052√55-3√205]
[√55-14√2052052√55-3√205]
[√55-14√2052052√55-3√205]
Step 7
Multiply 3√205 by √205√205.
[√55-14√2052052√55-(3√205⋅√205√205)]
Step 8
Step 8.1
Multiply 3√205 by √205√205.
[√55-14√2052052√55-3√205√205√205]
Step 8.2
Raise √205 to the power of 1.
[√55-14√2052052√55-3√205√2051√205]
Step 8.3
Raise √205 to the power of 1.
[√55-14√2052052√55-3√205√2051√2051]
Step 8.4
Use the power rule aman=am+n to combine exponents.
[√55-14√2052052√55-3√205√2051+1]
Step 8.5
Add 1 and 1.
[√55-14√2052052√55-3√205√2052]
Step 8.6
Rewrite √2052 as 205.
Step 8.6.1
Use n√ax=axn to rewrite √205 as 20512.
[√55-14√2052052√55-3√205(20512)2]
Step 8.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[√55-14√2052052√55-3√20520512⋅2]
Step 8.6.3
Combine 12 and 2.
[√55-14√2052052√55-3√20520522]
Step 8.6.4
Cancel the common factor of 2.
Step 8.6.4.1
Cancel the common factor.
[√55-14√2052052√55-3√20520522]
Step 8.6.4.2
Rewrite the expression.
[√55-14√2052052√55-3√2052051]
[√55-14√2052052√55-3√2052051]
Step 8.6.5
Evaluate the exponent.
[√55-14√2052052√55-3√205205]
[√55-14√2052052√55-3√205205]
[√55-14√2052052√55-3√205205]
Step 9
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
Step 10
Step 10.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
√55(-3√205205)-2√55(-14√205205)
Step 10.2
Simplify the determinant.
Step 10.2.1
Simplify each term.
Step 10.2.1.1
Multiply √55(-3√205205).
Step 10.2.1.1.1
Multiply √55 by 3√205205.
-√5(3√205)5⋅205-2√55(-14√205205)
Step 10.2.1.1.2
Combine using the product rule for radicals.
-3√5⋅2055⋅205-2√55(-14√205205)
Step 10.2.1.1.3
Multiply 5 by 205.
-3√10255⋅205-2√55(-14√205205)
Step 10.2.1.1.4
Multiply 5 by 205.
-3√10251025-2√55(-14√205205)
-3√10251025-2√55(-14√205205)
Step 10.2.1.2
Simplify the numerator.
Step 10.2.1.2.1
Rewrite 1025 as 52⋅41.
Step 10.2.1.2.1.1
Factor 25 out of 1025.
-3√25(41)1025-2√55(-14√205205)
Step 10.2.1.2.1.2
Rewrite 25 as 52.
-3√52⋅411025-2√55(-14√205205)
-3√52⋅411025-2√55(-14√205205)
Step 10.2.1.2.2
Pull terms out from under the radical.
-3⋅5√411025-2√55(-14√205205)
Step 10.2.1.2.3
Multiply 3 by 5.
-15√411025-2√55(-14√205205)
-15√411025-2√55(-14√205205)
Step 10.2.1.3
Cancel the common factor of 15 and 1025.
Step 10.2.1.3.1
Factor 5 out of 15√41.
-5(3√41)1025-2√55(-14√205205)
Step 10.2.1.3.2
Cancel the common factors.
Step 10.2.1.3.2.1
Factor 5 out of 1025.
-5(3√41)5(205)-2√55(-14√205205)
Step 10.2.1.3.2.2
Cancel the common factor.
-5(3√41)5⋅205-2√55(-14√205205)
Step 10.2.1.3.2.3
Rewrite the expression.
-3√41205-2√55(-14√205205)
-3√41205-2√55(-14√205205)
-3√41205-2√55(-14√205205)
Step 10.2.1.4
Multiply -2√55(-14√205205).
Step 10.2.1.4.1
Multiply -1 by -1.
-3√41205+12√5514√205205
Step 10.2.1.4.2
Multiply 2√55 by 1.
-3√41205+2√55⋅14√205205
Step 10.2.1.4.3
Multiply 2√55 by 14√205205.
-3√41205+2√5(14√205)5⋅205
Step 10.2.1.4.4
Multiply 14 by 2.
-3√41205+28√5√2055⋅205
Step 10.2.1.4.5
Combine using the product rule for radicals.
-3√41205+28√205⋅55⋅205
Step 10.2.1.4.6
Multiply 205 by 5.
-3√41205+28√10255⋅205
Step 10.2.1.4.7
Multiply 5 by 205.
-3√41205+28√10251025
-3√41205+28√10251025
Step 10.2.1.5
Simplify the numerator.
Step 10.2.1.5.1
Rewrite 1025 as 52⋅41.
Step 10.2.1.5.1.1
Factor 25 out of 1025.
-3√41205+28√25(41)1025
Step 10.2.1.5.1.2
Rewrite 25 as 52.
-3√41205+28√52⋅411025
-3√41205+28√52⋅411025
Step 10.2.1.5.2
Pull terms out from under the radical.
-3√41205+28⋅5√411025
Step 10.2.1.5.3
Multiply 28 by 5.
-3√41205+140√411025
-3√41205+140√411025
Step 10.2.1.6
Cancel the common factor of 140 and 1025.
Step 10.2.1.6.1
Factor 5 out of 140√41.
-3√41205+5(28√41)1025
Step 10.2.1.6.2
Cancel the common factors.
Step 10.2.1.6.2.1
Factor 5 out of 1025.
-3√41205+5(28√41)5(205)
Step 10.2.1.6.2.2
Cancel the common factor.
-3√41205+5(28√41)5⋅205
Step 10.2.1.6.2.3
Rewrite the expression.
-3√41205+28√41205
-3√41205+28√41205
-3√41205+28√41205
-3√41205+28√41205
Step 10.2.2
Combine the numerators over the common denominator.
-3√41+28√41205
Step 10.2.3
Add -3√41 and 28√41.
25√41205
Step 10.2.4
Cancel the common factor of 25 and 205.
Step 10.2.4.1
Factor 5 out of 25√41.
5(5√41)205
Step 10.2.4.2
Cancel the common factors.
Step 10.2.4.2.1
Factor 5 out of 205.
5(5√41)5(41)
Step 10.2.4.2.2
Cancel the common factor.
5(5√41)5⋅41
Step 10.2.4.2.3
Rewrite the expression.
5√4141
5√4141
5√4141
5√4141
5√4141
Step 11
Since the determinant is non-zero, the inverse exists.
Step 12
Substitute the known values into the formula for the inverse.
15√4141[-3√20520514√205205-2√55√55]
Step 13
Multiply the numerator by the reciprocal of the denominator.
1415√41[-3√20520514√205205-2√55√55]
Step 14
Multiply 415√41 by 1.
415√41[-3√20520514√205205-2√55√55]
Step 15
Multiply 415√41 by √41√41.
415√41⋅√41√41[-3√20520514√205205-2√55√55]
Step 16
Step 16.1
Multiply 415√41 by √41√41.
41√415√41√41[-3√20520514√205205-2√55√55]
Step 16.2
Move √41.
41√415(√41√41)[-3√20520514√205205-2√55√55]
Step 16.3
Raise √41 to the power of 1.
41√415(√411√41)[-3√20520514√205205-2√55√55]
Step 16.4
Raise √41 to the power of 1.
41√415(√411√411)[-3√20520514√205205-2√55√55]
Step 16.5
Use the power rule aman=am+n to combine exponents.
41√415√411+1[-3√20520514√205205-2√55√55]
Step 16.6
Add 1 and 1.
41√415√412[-3√20520514√205205-2√55√55]
Step 16.7
Rewrite √412 as 41.
Step 16.7.1
Use n√ax=axn to rewrite √41 as 4112.
41√415(4112)2[-3√20520514√205205-2√55√55]
Step 16.7.2
Apply the power rule and multiply exponents, (am)n=amn.
41√415⋅4112⋅2[-3√20520514√205205-2√55√55]
Step 16.7.3
Combine 12 and 2.
41√415⋅4122[-3√20520514√205205-2√55√55]
Step 16.7.4
Cancel the common factor of 2.
Step 16.7.4.1
Cancel the common factor.
41√415⋅4122[-3√20520514√205205-2√55√55]
Step 16.7.4.2
Rewrite the expression.
41√415⋅411[-3√20520514√205205-2√55√55]
41√415⋅411[-3√20520514√205205-2√55√55]
Step 16.7.5
Evaluate the exponent.
41√415⋅41[-3√20520514√205205-2√55√55]
41√415⋅41[-3√20520514√205205-2√55√55]
41√415⋅41[-3√20520514√205205-2√55√55]
Step 17
Step 17.1
Cancel the common factor.
41√415⋅41[-3√20520514√205205-2√55√55]
Step 17.2
Rewrite the expression.
√415[-3√20520514√205205-2√55√55]
√415[-3√20520514√205205-2√55√55]
Step 18
Multiply √415 by each element of the matrix.
[√415(-3√205205)√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19
Step 19.1
Multiply √415(-3√205205).
Step 19.1.1
Multiply √415 by 3√205205.
[-√41(3√205)5⋅205√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.1.2
Combine using the product rule for radicals.
[-3√41⋅2055⋅205√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.1.3
Multiply 41 by 205.
[-3√84055⋅205√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.1.4
Multiply 5 by 205.
[-3√84051025√415⋅14√205205√415(-2√55)√415⋅√55]
[-3√84051025√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.2
Simplify the numerator.
Step 19.2.1
Rewrite 8405 as 412⋅5.
Step 19.2.1.1
Factor 1681 out of 8405.
[-3√1681(5)1025√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.2.1.2
Rewrite 1681 as 412.
[-3√412⋅51025√415⋅14√205205√415(-2√55)√415⋅√55]
[-3√412⋅51025√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.2.2
Pull terms out from under the radical.
[-3⋅41√51025√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.2.3
Multiply 3 by 41.
[-123√51025√415⋅14√205205√415(-2√55)√415⋅√55]
[-123√51025√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.3
Cancel the common factor of 123 and 1025.
Step 19.3.1
Factor 41 out of 123√5.
[-41(3√5)1025√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.3.2
Cancel the common factors.
Step 19.3.2.1
Factor 41 out of 1025.
[-41(3√5)41(25)√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.3.2.2
Cancel the common factor.
[-41(3√5)41⋅25√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.3.2.3
Rewrite the expression.
[-3√525√415⋅14√205205√415(-2√55)√415⋅√55]
[-3√525√415⋅14√205205√415(-2√55)√415⋅√55]
[-3√525√415⋅14√205205√415(-2√55)√415⋅√55]
Step 19.4
Multiply √415⋅14√205205.
Step 19.4.1
Multiply √415 by 14√205205.
[-3√525√41(14√205)5⋅205√415(-2√55)√415⋅√55]
Step 19.4.2
Combine using the product rule for radicals.
[-3√52514√41⋅2055⋅205√415(-2√55)√415⋅√55]
Step 19.4.3
Multiply 41 by 205.
[-3√52514√84055⋅205√415(-2√55)√415⋅√55]
Step 19.4.4
Multiply 5 by 205.
[-3√52514√84051025√415(-2√55)√415⋅√55]
[-3√52514√84051025√415(-2√55)√415⋅√55]
Step 19.5
Simplify the numerator.
Step 19.5.1
Rewrite 8405 as 412⋅5.
Step 19.5.1.1
Factor 1681 out of 8405.
[-3√52514√1681(5)1025√415(-2√55)√415⋅√55]
Step 19.5.1.2
Rewrite 1681 as 412.
[-3√52514√412⋅51025√415(-2√55)√415⋅√55]
[-3√52514√412⋅51025√415(-2√55)√415⋅√55]
Step 19.5.2
Pull terms out from under the radical.
[-3√52514⋅41√51025√415(-2√55)√415⋅√55]
Step 19.5.3
Multiply 14 by 41.
[-3√525574√51025√415(-2√55)√415⋅√55]
[-3√525574√51025√415(-2√55)√415⋅√55]
Step 19.6
Cancel the common factor of 574 and 1025.
Step 19.6.1
Factor 41 out of 574√5.
[-3√52541(14√5)1025√415(-2√55)√415⋅√55]
Step 19.6.2
Cancel the common factors.
Step 19.6.2.1
Factor 41 out of 1025.
[-3√52541(14√5)41(25)√415(-2√55)√415⋅√55]
Step 19.6.2.2
Cancel the common factor.
[-3√52541(14√5)41⋅25√415(-2√55)√415⋅√55]
Step 19.6.2.3
Rewrite the expression.
[-3√52514√525√415(-2√55)√415⋅√55]
[-3√52514√525√415(-2√55)√415⋅√55]
[-3√52514√525√415(-2√55)√415⋅√55]
Step 19.7
Multiply √415(-2√55).
Step 19.7.1
Multiply √415 by 2√55.
[-3√52514√525-√41(2√5)5⋅5√415⋅√55]
Step 19.7.2
Combine using the product rule for radicals.
[-3√52514√525-2√41⋅55⋅5√415⋅√55]
Step 19.7.3
Multiply 41 by 5.
[-3√52514√525-2√2055⋅5√415⋅√55]
Step 19.7.4
Multiply 5 by 5.
[-3√52514√525-2√20525√415⋅√55]
[-3√52514√525-2√20525√415⋅√55]
Step 19.8
Multiply √415⋅√55.
Step 19.8.1
Multiply √415 by √55.
[-3√52514√525-2√20525√41√55⋅5]
Step 19.8.2
Combine using the product rule for radicals.
[-3√52514√525-2√20525√41⋅55⋅5]
Step 19.8.3
Multiply 41 by 5.
[-3√52514√525-2√20525√2055⋅5]
Step 19.8.4
Multiply 5 by 5.
[-3√52514√525-2√20525√20525]
[-3√52514√525-2√20525√20525]
[-3√52514√525-2√20525√20525]