Linear Algebra Examples

Find the Determinant [[sin(theta),-1],[-1,sin(theta)]]
[sin(theta)-1-1sin(theta)][sin(theta)11sin(theta)]
Step 1
Multiply tt by tt by adding the exponents.
Tap for more steps...
Step 1.1
Move tt.
[sin(tthea)-1-1sin(theta)][sin(tthea)11sin(theta)]
Step 1.2
Multiply tt by tt.
[sin(t2hea)-1-1sin(theta)][sin(t2hea)11sin(theta)]
[sin(t2hea)-1-1sin(theta)][sin(t2hea)11sin(theta)]
Step 2
Multiply tt by tt by adding the exponents.
Tap for more steps...
Step 2.1
Move tt.
[sin(t2hea)-1-1sin(tthea)][sin(t2hea)11sin(tthea)]
Step 2.2
Multiply tt by tt.
[sin(t2hea)-1-1sin(t2hea)][sin(t2hea)11sin(t2hea)]
[sin(t2hea)-1-1sin(t2hea)][sin(t2hea)11sin(t2hea)]
Step 3
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
sin(t2hea)sin(t2hea)---1sin(t2hea)sin(t2hea)1
Step 4
Simplify the determinant.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply sin(t2hea)sin(t2hea)sin(t2hea)sin(t2hea).
Tap for more steps...
Step 4.1.1.1
Raise sin(t2hea)sin(t2hea) to the power of 11.
sin1(t2hea)sin(t2hea)---1sin1(t2hea)sin(t2hea)1
Step 4.1.1.2
Raise sin(t2hea)sin(t2hea) to the power of 11.
sin1(t2hea)sin1(t2hea)---1sin1(t2hea)sin1(t2hea)1
Step 4.1.1.3
Use the power rule aman=am+naman=am+n to combine exponents.
sin(t2hea)1+1---1sin(t2hea)1+11
Step 4.1.1.4
Add 11 and 11.
sin2(t2hea)---1sin2(t2hea)1
sin2(t2hea)---1sin2(t2hea)1
Step 4.1.2
Multiply ---11.
Tap for more steps...
Step 4.1.2.1
Multiply -11 by -11.
sin2(t2hea)-11sin2(t2hea)11
Step 4.1.2.2
Multiply -11 by 11.
sin2(t2hea)-1sin2(t2hea)1
sin2(t2hea)-1sin2(t2hea)1
sin2(t2hea)-1sin2(t2hea)1
Step 4.2
Reorder sin2(t2hea)sin2(t2hea) and -11.
-1+sin2(t2hea)1+sin2(t2hea)
Step 4.3
Rewrite -11 as -1(1)1(1).
-1(1)+sin2(t2hea)1(1)+sin2(t2hea)
Step 4.4
Factor -11 out of sin2(t2hea)sin2(t2hea).
-1(1)-1(-sin2(t2hea))1(1)1(sin2(t2hea))
Step 4.5
Factor -11 out of -1(1)-1(-sin2(t2hea))1(1)1(sin2(t2hea)).
-1(1-sin2(t2hea))1(1sin2(t2hea))
Step 4.6
Rewrite -1(1-sin2(t2hea))1(1sin2(t2hea)) as -(1-sin2(t2hea))(1sin2(t2hea)).
-(1-sin2(t2hea))(1sin2(t2hea))
Step 4.7
Apply pythagorean identity.
-cos2(t2hea)cos2(t2hea)
-cos2(t2hea)cos2(t2hea)
 [x2  12  π  xdx ]  x2  12  π  xdx