Enter a problem...
Linear Algebra Examples
[sin(theta)-1-1sin(theta)][sin(theta)−1−1sin(theta)]
Step 1
Step 1.1
Move tt.
[sin(t⋅thea)-1-1sin(theta)][sin(t⋅thea)−1−1sin(theta)]
Step 1.2
Multiply tt by tt.
[sin(t2hea)-1-1sin(theta)][sin(t2hea)−1−1sin(theta)]
[sin(t2hea)-1-1sin(theta)][sin(t2hea)−1−1sin(theta)]
Step 2
Step 2.1
Move tt.
[sin(t2hea)-1-1sin(t⋅thea)][sin(t2hea)−1−1sin(t⋅thea)]
Step 2.2
Multiply tt by tt.
[sin(t2hea)-1-1sin(t2hea)][sin(t2hea)−1−1sin(t2hea)]
[sin(t2hea)-1-1sin(t2hea)][sin(t2hea)−1−1sin(t2hea)]
Step 3
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
sin(t2hea)sin(t2hea)---1sin(t2hea)sin(t2hea)−−−1
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply sin(t2hea)sin(t2hea)sin(t2hea)sin(t2hea).
Step 4.1.1.1
Raise sin(t2hea)sin(t2hea) to the power of 11.
sin1(t2hea)sin(t2hea)---1sin1(t2hea)sin(t2hea)−−−1
Step 4.1.1.2
Raise sin(t2hea)sin(t2hea) to the power of 11.
sin1(t2hea)sin1(t2hea)---1sin1(t2hea)sin1(t2hea)−−−1
Step 4.1.1.3
Use the power rule aman=am+naman=am+n to combine exponents.
sin(t2hea)1+1---1sin(t2hea)1+1−−−1
Step 4.1.1.4
Add 11 and 11.
sin2(t2hea)---1sin2(t2hea)−−−1
sin2(t2hea)---1sin2(t2hea)−−−1
Step 4.1.2
Multiply ---1−−−1.
Step 4.1.2.1
Multiply -1−1 by -1−1.
sin2(t2hea)-1⋅1sin2(t2hea)−1⋅1
Step 4.1.2.2
Multiply -1−1 by 11.
sin2(t2hea)-1sin2(t2hea)−1
sin2(t2hea)-1sin2(t2hea)−1
sin2(t2hea)-1sin2(t2hea)−1
Step 4.2
Reorder sin2(t2hea)sin2(t2hea) and -1−1.
-1+sin2(t2hea)−1+sin2(t2hea)
Step 4.3
Rewrite -1−1 as -1(1)−1(1).
-1(1)+sin2(t2hea)−1(1)+sin2(t2hea)
Step 4.4
Factor -1−1 out of sin2(t2hea)sin2(t2hea).
-1(1)-1(-sin2(t2hea))−1(1)−1(−sin2(t2hea))
Step 4.5
Factor -1−1 out of -1(1)-1(-sin2(t2hea))−1(1)−1(−sin2(t2hea)).
-1(1-sin2(t2hea))−1(1−sin2(t2hea))
Step 4.6
Rewrite -1(1-sin2(t2hea))−1(1−sin2(t2hea)) as -(1-sin2(t2hea))−(1−sin2(t2hea)).
-(1-sin2(t2hea))−(1−sin2(t2hea))
Step 4.7
Apply pythagorean identity.
-cos2(t2hea)−cos2(t2hea)
-cos2(t2hea)−cos2(t2hea)