Enter a problem...
Linear Algebra Examples
[32h-1h2-49]
Step 1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
3⋅-49-h2(2h-1)
Step 2
Step 2.1
Multiply 3 by -49.
-147-h2(2h-1)
Step 2.2
Apply the distributive property.
-147-h2(2h)-h2⋅-1
Step 2.3
Rewrite using the commutative property of multiplication.
-147-1⋅2h2h-h2⋅-1
Step 2.4
Multiply -h2⋅-1.
Step 2.4.1
Multiply -1 by -1.
-147-1⋅2h2h+1h2
Step 2.4.2
Multiply h2 by 1.
-147-1⋅2h2h+h2
-147-1⋅2h2h+h2
Step 2.5
Simplify each term.
Step 2.5.1
Multiply h2 by h by adding the exponents.
Step 2.5.1.1
Move h.
-147-1⋅2(h⋅h2)+h2
Step 2.5.1.2
Multiply h by h2.
Step 2.5.1.2.1
Raise h to the power of 1.
-147-1⋅2(h1h2)+h2
Step 2.5.1.2.2
Use the power rule aman=am+n to combine exponents.
-147-1⋅2h1+2+h2
-147-1⋅2h1+2+h2
Step 2.5.1.3
Add 1 and 2.
-147-1⋅2h3+h2
-147-1⋅2h3+h2
Step 2.5.2
Multiply -1 by 2.
-147-2h3+h2
-147-2h3+h2
-147-2h3+h2