Linear Algebra Examples

Find the Determinant [[-3e^(2t),-4e^(3t)],[-6e^(2t),-3e^(3t)]]
[-3e2t-4e3t-6e2t-3e3t]
Step 1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-3e2t(-3e3t)-(-6e2t(-4e3t))
Step 2
Simplify the determinant.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Rewrite using the commutative property of multiplication.
-3-3e2te3t-(-6e2t(-4e3t))
Step 2.1.2
Multiply e2t by e3t by adding the exponents.
Tap for more steps...
Step 2.1.2.1
Move e3t.
-3-3(e3te2t)-(-6e2t(-4e3t))
Step 2.1.2.2
Use the power rule aman=am+n to combine exponents.
-3-3e3t+2t-(-6e2t(-4e3t))
Step 2.1.2.3
Add 3t and 2t.
-3-3e5t-(-6e2t(-4e3t))
-3-3e5t-(-6e2t(-4e3t))
Step 2.1.3
Multiply -3 by -3.
9e5t-(-6e2t(-4e3t))
Step 2.1.4
Multiply e2t by e3t by adding the exponents.
Tap for more steps...
Step 2.1.4.1
Move e3t.
9e5t-(-6(e3te2t)-4)
Step 2.1.4.2
Use the power rule aman=am+n to combine exponents.
9e5t-(-6e3t+2t-4)
Step 2.1.4.3
Add 3t and 2t.
9e5t-(-6e5t-4)
9e5t-(-6e5t-4)
Step 2.1.5
Multiply -4 by -6.
9e5t-(24e5t)
Step 2.1.6
Multiply 24 by -1.
9e5t-24e5t
9e5t-24e5t
Step 2.2
Subtract 24e5t from 9e5t.
-15e5t
-15e5t
 [x2  12  π  xdx ]