Linear Algebra Examples

Find the Determinant [[e^(3x),e^(2x)],[3e^(3x),2e^(2x)]]
[e3xe2x3e3x2e2x]
Step 1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
e3x(2e2x)-3e3xe2x
Step 2
Simplify the determinant.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Rewrite using the commutative property of multiplication.
2e3xe2x-3e3xe2x
Step 2.1.2
Multiply e3x by e2x by adding the exponents.
Tap for more steps...
Step 2.1.2.1
Move e2x.
2(e2xe3x)-3e3xe2x
Step 2.1.2.2
Use the power rule aman=am+n to combine exponents.
2e2x+3x-3e3xe2x
Step 2.1.2.3
Add 2x and 3x.
2e5x-3e3xe2x
2e5x-3e3xe2x
Step 2.1.3
Multiply e3x by e2x by adding the exponents.
Tap for more steps...
Step 2.1.3.1
Move e2x.
2e5x-3(e2xe3x)
Step 2.1.3.2
Use the power rule aman=am+n to combine exponents.
2e5x-3e2x+3x
Step 2.1.3.3
Add 2x and 3x.
2e5x-3e5x
2e5x-3e5x
2e5x-3e5x
Step 2.2
Subtract 3e5x from 2e5x.
-e5x
-e5x
 [x2  12  π  xdx ]