Enter a problem...
Linear Algebra Examples
A=[x3x2-35x04x31]A=⎡⎢⎣x3x2−35x04x31⎤⎥⎦
Step 1
Step 1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5x0x31|
Step 1.4
Multiply element a11 by its cofactor.
x|5x0x31|
Step 1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-3041|
Step 1.6
Multiply element a12 by its cofactor.
-3|-3041|
Step 1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-35x4x3|
Step 1.8
Multiply element a13 by its cofactor.
x2|-35x4x3|
Step 1.9
Add the terms together.
x|5x0x31|-3|-3041|+x2|-35x4x3|
x|5x0x31|-3|-3041|+x2|-35x4x3|
Step 2
Step 2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
x(5x⋅1-x3⋅0)-3|-3041|+x2|-35x4x3|
Step 2.2
Simplify the determinant.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Multiply 5 by 1.
x(5x-x3⋅0)-3|-3041|+x2|-35x4x3|
Step 2.2.1.2
Multiply -x3⋅0.
Step 2.2.1.2.1
Multiply 0 by -1.
x(5x+0x3)-3|-3041|+x2|-35x4x3|
Step 2.2.1.2.2
Multiply 0 by x3.
x(5x+0)-3|-3041|+x2|-35x4x3|
x(5x+0)-3|-3041|+x2|-35x4x3|
x(5x+0)-3|-3041|+x2|-35x4x3|
Step 2.2.2
Add 5x and 0.
x(5x)-3|-3041|+x2|-35x4x3|
x(5x)-3|-3041|+x2|-35x4x3|
x(5x)-3|-3041|+x2|-35x4x3|
Step 3
Step 3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
x(5x)-3(-3⋅1-4⋅0)+x2|-35x4x3|
Step 3.2
Simplify the determinant.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply -3 by 1.
x(5x)-3(-3-4⋅0)+x2|-35x4x3|
Step 3.2.1.2
Multiply -4 by 0.
x(5x)-3(-3+0)+x2|-35x4x3|
x(5x)-3(-3+0)+x2|-35x4x3|
Step 3.2.2
Add -3 and 0.
x(5x)-3⋅-3+x2|-35x4x3|
x(5x)-3⋅-3+x2|-35x4x3|
x(5x)-3⋅-3+x2|-35x4x3|
Step 4
Step 4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
x(5x)-3⋅-3+x2(-3x3-4(5x))
Step 4.2
Multiply 5 by -4.
x(5x)-3⋅-3+x2(-3x3-20x)
x(5x)-3⋅-3+x2(-3x3-20x)
Step 5
Step 5.1
Rewrite using the commutative property of multiplication.
5x⋅x-3⋅-3+x2(-3x3-20x)
Step 5.2
Multiply x by x by adding the exponents.
Step 5.2.1
Move x.
5(x⋅x)-3⋅-3+x2(-3x3-20x)
Step 5.2.2
Multiply x by x.
5x2-3⋅-3+x2(-3x3-20x)
5x2-3⋅-3+x2(-3x3-20x)
Step 5.3
Multiply -3 by -3.
5x2+9+x2(-3x3-20x)
Step 5.4
Apply the distributive property.
5x2+9+x2(-3x3)+x2(-20x)
Step 5.5
Rewrite using the commutative property of multiplication.
5x2+9-3x2x3+x2(-20x)
Step 5.6
Rewrite using the commutative property of multiplication.
5x2+9-3x2x3-20x2x
Step 5.7
Simplify each term.
Step 5.7.1
Multiply x2 by x3 by adding the exponents.
Step 5.7.1.1
Move x3.
5x2+9-3(x3x2)-20x2x
Step 5.7.1.2
Use the power rule aman=am+n to combine exponents.
5x2+9-3x3+2-20x2x
Step 5.7.1.3
Add 3 and 2.
5x2+9-3x5-20x2x
5x2+9-3x5-20x2x
Step 5.7.2
Multiply x2 by x by adding the exponents.
Step 5.7.2.1
Move x.
5x2+9-3x5-20(x⋅x2)
Step 5.7.2.2
Multiply x by x2.
Step 5.7.2.2.1
Raise x to the power of 1.
5x2+9-3x5-20(x1x2)
Step 5.7.2.2.2
Use the power rule aman=am+n to combine exponents.
5x2+9-3x5-20x1+2
5x2+9-3x5-20x1+2
Step 5.7.2.3
Add 1 and 2.
5x2+9-3x5-20x3
5x2+9-3x5-20x3
5x2+9-3x5-20x3
5x2+9-3x5-20x3