Linear Algebra Examples

Write as a Vector Equality (x+y)/7=(y+4)/5 , (x-z)/5=(y-4)/2 , (y-z)/3=(x+2)/10
x+y7=y+45x+y7=y+45 , x-z5=y-42xz5=y42 , y-z3=x+210yz3=x+210
Step 1
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 1.1
Subtract y+45y+45 from both sides of the equation.
x+y7-y+45=0,x-z5=y-42,y-z3=x+210x+y7y+45=0,xz5=y42,yz3=x+210
Step 1.2
To write x+y7x+y7 as a fraction with a common denominator, multiply by 5555.
x+y755-y+45=0,x-z5=y-42,y-z3=x+210x+y755y+45=0,xz5=y42,yz3=x+210
Step 1.3
To write -y+45y+45 as a fraction with a common denominator, multiply by 7777.
x+y755-y+4577=0,x-z5=y-42,y-z3=x+210x+y755y+4577=0,xz5=y42,yz3=x+210
Step 1.4
Write each expression with a common denominator of 3535, by multiplying each by an appropriate factor of 11.
Tap for more steps...
Step 1.4.1
Multiply x+y7x+y7 by 5555.
(x+y)575-y+4577=0,x-z5=y-42,y-z3=x+210(x+y)575y+4577=0,xz5=y42,yz3=x+210
Step 1.4.2
Multiply 77 by 55.
(x+y)535-y+4577=0,x-z5=y-42,y-z3=x+210(x+y)535y+4577=0,xz5=y42,yz3=x+210
Step 1.4.3
Multiply y+45y+45 by 7777.
(x+y)535-(y+4)757=0,x-z5=y-42,y-z3=x+210(x+y)535(y+4)757=0,xz5=y42,yz3=x+210
Step 1.4.4
Multiply 55 by 77.
(x+y)535-(y+4)735=0,x-z5=y-42,y-z3=x+210(x+y)535(y+4)735=0,xz5=y42,yz3=x+210
(x+y)535-(y+4)735=0,x-z5=y-42,y-z3=x+210(x+y)535(y+4)735=0,xz5=y42,yz3=x+210
Step 1.5
Combine the numerators over the common denominator.
(x+y)5-(y+4)735=0,x-z5=y-42,y-z3=x+210(x+y)5(y+4)735=0,xz5=y42,yz3=x+210
Step 1.6
Simplify the numerator.
Tap for more steps...
Step 1.6.1
Apply the distributive property.
x5+y5-(y+4)735=0,x-z5=y-42,y-z3=x+210x5+y5(y+4)735=0,xz5=y42,yz3=x+210
Step 1.6.2
Move 55 to the left of xx.
5x+y5-(y+4)735=0,x-z5=y-42,y-z3=x+2105x+y5(y+4)735=0,xz5=y42,yz3=x+210
Step 1.6.3
Move 55 to the left of yy.
5x+5y-(y+4)735=0,x-z5=y-42,y-z3=x+2105x+5y(y+4)735=0,xz5=y42,yz3=x+210
Step 1.6.4
Multiply 55 by yy.
5x+5y-(y+4)735=0,x-z5=y-42,y-z3=x+2105x+5y(y+4)735=0,xz5=y42,yz3=x+210
Step 1.6.5
Apply the distributive property.
5x+5y+(-y-14)735=0,x-z5=y-42,y-z3=x+2105x+5y+(y14)735=0,xz5=y42,yz3=x+210
Step 1.6.6
Multiply -11 by 44.
5x+5y+(-y-4)735=0,x-z5=y-42,y-z3=x+2105x+5y+(y4)735=0,xz5=y42,yz3=x+210
Step 1.6.7
Apply the distributive property.
5x+5y-y7-4735=0,x-z5=y-42,y-z3=x+2105x+5yy74735=0,xz5=y42,yz3=x+210
Step 1.6.8
Multiply 77 by -11.
5x+5y-7y-4735=0,x-z5=y-42,y-z3=x+2105x+5y7y4735=0,xz5=y42,yz3=x+210
Step 1.6.9
Multiply -44 by 77.
5x+5y-7y-2835=0,x-z5=y-42,y-z3=x+2105x+5y7y2835=0,xz5=y42,yz3=x+210
Step 1.6.10
Subtract 7y7y from 5y5y.
5x-2y-2835=0,x-z5=y-42,y-z3=x+2105x2y2835=0,xz5=y42,yz3=x+210
5x-2y-2835=0,x-z5=y-42,y-z3=x+2105x2y2835=0,xz5=y42,yz3=x+210
5x-2y-2835=0,x-z5=y-42,y-z3=x+2105x2y2835=0,xz5=y42,yz3=x+210
Step 2
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 2.1
Subtract y-42y42 from both sides of the equation.
5x-2y-2835=0,x-z5-y-42=0,y-z3=x+2105x2y2835=0,xz5y42=0,yz3=x+210
Step 2.2
To write x-z5xz5 as a fraction with a common denominator, multiply by 2222.
5x-2y-2835=0,x-z522-y-42=0,y-z3=x+2105x2y2835=0,xz522y42=0,yz3=x+210
Step 2.3
To write -y-42y42 as a fraction with a common denominator, multiply by 5555.
5x-2y-2835=0,x-z522-y-4255=0,y-z3=x+2105x2y2835=0,xz522y4255=0,yz3=x+210
Step 2.4
Write each expression with a common denominator of 1010, by multiplying each by an appropriate factor of 11.
Tap for more steps...
Step 2.4.1
Multiply x-z5xz5 by 2222.
5x-2y-2835=0,(x-z)252-y-4255=0,y-z3=x+2105x2y2835=0,(xz)252y4255=0,yz3=x+210
Step 2.4.2
Multiply 55 by 22.
5x-2y-2835=0,(x-z)210-y-4255=0,y-z3=x+2105x2y2835=0,(xz)210y4255=0,yz3=x+210
Step 2.4.3
Multiply y-42y42 by 5555.
5x-2y-2835=0,(x-z)210-(y-4)525=0,y-z3=x+2105x2y2835=0,(xz)210(y4)525=0,yz3=x+210
Step 2.4.4
Multiply 22 by 55.
5x-2y-2835=0,(x-z)210-(y-4)510=0,y-z3=x+2105x2y2835=0,(xz)210(y4)510=0,yz3=x+210
5x-2y-2835=0,(x-z)210-(y-4)510=0,y-z3=x+2105x2y2835=0,(xz)210(y4)510=0,yz3=x+210
Step 2.5
Combine the numerators over the common denominator.
5x-2y-2835=0,(x-z)2-(y-4)510=0,y-z3=x+2105x2y2835=0,(xz)2(y4)510=0,yz3=x+210
Step 2.6
Simplify the numerator.
Tap for more steps...
Step 2.6.1
Apply the distributive property.
5x-2y-2835=0,x2-z2-(y-4)510=0,y-z3=x+2105x2y2835=0,x2z2(y4)510=0,yz3=x+210
Step 2.6.2
Move 22 to the left of xx.
5x-2y-2835=0,2x-z2-(y-4)510=0,y-z3=x+2105x2y2835=0,2xz2(y4)510=0,yz3=x+210
Step 2.6.3
Multiply 22 by -11.
5x-2y-2835=0,2x-2z-(y-4)510=0,y-z3=x+2105x2y2835=0,2x2z(y4)510=0,yz3=x+210
Step 2.6.4
Apply the distributive property.
5x-2y-2835=0,2x-2z+(-y--4)510=0,y-z3=x+2105x2y2835=0,2x2z+(y4)510=0,yz3=x+210
Step 2.6.5
Multiply -11 by -44.
5x-2y-2835=0,2x-2z+(-y+4)510=0,y-z3=x+2105x2y2835=0,2x2z+(y+4)510=0,yz3=x+210
Step 2.6.6
Apply the distributive property.
5x-2y-2835=0,2x-2z-y5+4510=0,y-z3=x+2105x2y2835=0,2x2zy5+4510=0,yz3=x+210
Step 2.6.7
Multiply 55 by -11.
5x-2y-2835=0,2x-2z-5y+4510=0,y-z3=x+2105x2y2835=0,2x2z5y+4510=0,yz3=x+210
Step 2.6.8
Multiply 44 by 55.
5x-2y-2835=0,2x-2z-5y+2010=0,y-z3=x+2105x2y2835=0,2x2z5y+2010=0,yz3=x+210
5x-2y-2835=0,2x-2z-5y+2010=0,y-z3=x+2105x2y2835=0,2x2z5y+2010=0,yz3=x+210
5x-2y-2835=0,2x-2z-5y+2010=0,y-z3=x+210
Step 3
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 3.1
Subtract x+210 from both sides of the equation.
5x-2y-2835=0,2x-2z-5y+2010=0,y-z3-x+210=0
Step 3.2
To write y-z3 as a fraction with a common denominator, multiply by 1010.
5x-2y-2835=0,2x-2z-5y+2010=0,y-z31010-x+210=0
Step 3.3
To write -x+210 as a fraction with a common denominator, multiply by 33.
5x-2y-2835=0,2x-2z-5y+2010=0,y-z31010-x+21033=0
Step 3.4
Write each expression with a common denominator of 30, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 3.4.1
Multiply y-z3 by 1010.
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)10310-x+21033=0
Step 3.4.2
Multiply 3 by 10.
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)1030-x+21033=0
Step 3.4.3
Multiply x+210 by 33.
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)1030-(x+2)3103=0
Step 3.4.4
Multiply 10 by 3.
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)1030-(x+2)330=0
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)1030-(x+2)330=0
Step 3.5
Combine the numerators over the common denominator.
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)10-(x+2)330=0
Step 3.6
Simplify the numerator.
Tap for more steps...
Step 3.6.1
Apply the distributive property.
5x-2y-2835=0,2x-2z-5y+2010=0,y10-z10-(x+2)330=0
Step 3.6.2
Move 10 to the left of y.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-z10-(x+2)330=0
Step 3.6.3
Multiply 10 by -1.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-(x+2)330=0
Step 3.6.4
Apply the distributive property.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z+(-x-12)330=0
Step 3.6.5
Multiply -1 by 2.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z+(-x-2)330=0
Step 3.6.6
Apply the distributive property.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-x3-2330=0
Step 3.6.7
Multiply 3 by -1.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-3x-2330=0
Step 3.6.8
Multiply -2 by 3.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-3x-630=0
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-3x-630=0
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-3x-630=0
Step 4
Write the system of equations in matrix form.
[135000110000013000]
Step 5
Find the reduced row echelon form.
Tap for more steps...
Step 5.1
Multiply each element of R1 by 35 to make the entry at 1,1 a 1.
Tap for more steps...
Step 5.1.1
Multiply each element of R1 by 35 to make the entry at 1,1 a 1.
[35(135)350350350110000013000]
Step 5.1.2
Simplify R1.
[1000110000013000]
[1000110000013000]
Step 5.2
Perform the row operation R2=R2-110R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 5.2.1
Perform the row operation R2=R2-110R1 to make the entry at 2,1 a 0.
[1000110-11010-11000-11000-1100013000]
Step 5.2.2
Simplify R2.
[10000000013000]
[10000000013000]
Step 5.3
Swap R3 with R2 to put a nonzero entry at 2,2.
[10000130000000]
Step 5.4
Multiply each element of R2 by 30 to make the entry at 2,2 a 1.
Tap for more steps...
Step 5.4.1
Multiply each element of R2 by 30 to make the entry at 2,2 a 1.
[100030030(130)3003000000]
Step 5.4.2
Simplify R2.
[100001000000]
[100001000000]
[100001000000]
Step 6
Use the result matrix to declare the final solutions to the system of equations.
x=0
y=0
Step 7
The solution is the set of ordered pairs that makes the system true.
(0,0,z)
Step 8
Decompose a solution vector by re-arranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality.
X=[xyz]=[00z]
 [x2  12  π  xdx ]