Enter a problem...
Linear Algebra Examples
x+y7=y+45x+y7=y+45 , x-z5=y-42x−z5=y−42 , y-z3=x+210y−z3=x+210
Step 1
Step 1.1
Subtract y+45y+45 from both sides of the equation.
x+y7-y+45=0,x-z5=y-42,y-z3=x+210x+y7−y+45=0,x−z5=y−42,y−z3=x+210
Step 1.2
To write x+y7x+y7 as a fraction with a common denominator, multiply by 5555.
x+y7⋅55-y+45=0,x-z5=y-42,y-z3=x+210x+y7⋅55−y+45=0,x−z5=y−42,y−z3=x+210
Step 1.3
To write -y+45−y+45 as a fraction with a common denominator, multiply by 7777.
x+y7⋅55-y+45⋅77=0,x-z5=y-42,y-z3=x+210x+y7⋅55−y+45⋅77=0,x−z5=y−42,y−z3=x+210
Step 1.4
Write each expression with a common denominator of 3535, by multiplying each by an appropriate factor of 11.
Step 1.4.1
Multiply x+y7x+y7 by 5555.
(x+y)⋅57⋅5-y+45⋅77=0,x-z5=y-42,y-z3=x+210(x+y)⋅57⋅5−y+45⋅77=0,x−z5=y−42,y−z3=x+210
Step 1.4.2
Multiply 77 by 55.
(x+y)⋅535-y+45⋅77=0,x-z5=y-42,y-z3=x+210(x+y)⋅535−y+45⋅77=0,x−z5=y−42,y−z3=x+210
Step 1.4.3
Multiply y+45y+45 by 7777.
(x+y)⋅535-(y+4)⋅75⋅7=0,x-z5=y-42,y-z3=x+210(x+y)⋅535−(y+4)⋅75⋅7=0,x−z5=y−42,y−z3=x+210
Step 1.4.4
Multiply 55 by 77.
(x+y)⋅535-(y+4)⋅735=0,x-z5=y-42,y-z3=x+210(x+y)⋅535−(y+4)⋅735=0,x−z5=y−42,y−z3=x+210
(x+y)⋅535-(y+4)⋅735=0,x-z5=y-42,y-z3=x+210(x+y)⋅535−(y+4)⋅735=0,x−z5=y−42,y−z3=x+210
Step 1.5
Combine the numerators over the common denominator.
(x+y)⋅5-(y+4)⋅735=0,x-z5=y-42,y-z3=x+210(x+y)⋅5−(y+4)⋅735=0,x−z5=y−42,y−z3=x+210
Step 1.6
Simplify the numerator.
Step 1.6.1
Apply the distributive property.
x⋅5+y⋅5-(y+4)⋅735=0,x-z5=y-42,y-z3=x+210x⋅5+y⋅5−(y+4)⋅735=0,x−z5=y−42,y−z3=x+210
Step 1.6.2
Move 55 to the left of xx.
5⋅x+y⋅5-(y+4)⋅735=0,x-z5=y-42,y-z3=x+2105⋅x+y⋅5−(y+4)⋅735=0,x−z5=y−42,y−z3=x+210
Step 1.6.3
Move 55 to the left of yy.
5⋅x+5⋅y-(y+4)⋅735=0,x-z5=y-42,y-z3=x+2105⋅x+5⋅y−(y+4)⋅735=0,x−z5=y−42,y−z3=x+210
Step 1.6.4
Multiply 55 by yy.
5x+5y-(y+4)⋅735=0,x-z5=y-42,y-z3=x+2105x+5y−(y+4)⋅735=0,x−z5=y−42,y−z3=x+210
Step 1.6.5
Apply the distributive property.
5x+5y+(-y-1⋅4)⋅735=0,x-z5=y-42,y-z3=x+2105x+5y+(−y−1⋅4)⋅735=0,x−z5=y−42,y−z3=x+210
Step 1.6.6
Multiply -1−1 by 44.
5x+5y+(-y-4)⋅735=0,x-z5=y-42,y-z3=x+2105x+5y+(−y−4)⋅735=0,x−z5=y−42,y−z3=x+210
Step 1.6.7
Apply the distributive property.
5x+5y-y⋅7-4⋅735=0,x-z5=y-42,y-z3=x+2105x+5y−y⋅7−4⋅735=0,x−z5=y−42,y−z3=x+210
Step 1.6.8
Multiply 77 by -1−1.
5x+5y-7y-4⋅735=0,x-z5=y-42,y-z3=x+2105x+5y−7y−4⋅735=0,x−z5=y−42,y−z3=x+210
Step 1.6.9
Multiply -4−4 by 77.
5x+5y-7y-2835=0,x-z5=y-42,y-z3=x+2105x+5y−7y−2835=0,x−z5=y−42,y−z3=x+210
Step 1.6.10
Subtract 7y7y from 5y5y.
5x-2y-2835=0,x-z5=y-42,y-z3=x+2105x−2y−2835=0,x−z5=y−42,y−z3=x+210
5x-2y-2835=0,x-z5=y-42,y-z3=x+2105x−2y−2835=0,x−z5=y−42,y−z3=x+210
5x-2y-2835=0,x-z5=y-42,y-z3=x+2105x−2y−2835=0,x−z5=y−42,y−z3=x+210
Step 2
Step 2.1
Subtract y-42y−42 from both sides of the equation.
5x-2y-2835=0,x-z5-y-42=0,y-z3=x+2105x−2y−2835=0,x−z5−y−42=0,y−z3=x+210
Step 2.2
To write x-z5x−z5 as a fraction with a common denominator, multiply by 2222.
5x-2y-2835=0,x-z5⋅22-y-42=0,y-z3=x+2105x−2y−2835=0,x−z5⋅22−y−42=0,y−z3=x+210
Step 2.3
To write -y-42−y−42 as a fraction with a common denominator, multiply by 5555.
5x-2y-2835=0,x-z5⋅22-y-42⋅55=0,y-z3=x+2105x−2y−2835=0,x−z5⋅22−y−42⋅55=0,y−z3=x+210
Step 2.4
Write each expression with a common denominator of 1010, by multiplying each by an appropriate factor of 11.
Step 2.4.1
Multiply x-z5x−z5 by 2222.
5x-2y-2835=0,(x-z)⋅25⋅2-y-42⋅55=0,y-z3=x+2105x−2y−2835=0,(x−z)⋅25⋅2−y−42⋅55=0,y−z3=x+210
Step 2.4.2
Multiply 55 by 22.
5x-2y-2835=0,(x-z)⋅210-y-42⋅55=0,y-z3=x+2105x−2y−2835=0,(x−z)⋅210−y−42⋅55=0,y−z3=x+210
Step 2.4.3
Multiply y-42y−42 by 5555.
5x-2y-2835=0,(x-z)⋅210-(y-4)⋅52⋅5=0,y-z3=x+2105x−2y−2835=0,(x−z)⋅210−(y−4)⋅52⋅5=0,y−z3=x+210
Step 2.4.4
Multiply 22 by 55.
5x-2y-2835=0,(x-z)⋅210-(y-4)⋅510=0,y-z3=x+2105x−2y−2835=0,(x−z)⋅210−(y−4)⋅510=0,y−z3=x+210
5x-2y-2835=0,(x-z)⋅210-(y-4)⋅510=0,y-z3=x+2105x−2y−2835=0,(x−z)⋅210−(y−4)⋅510=0,y−z3=x+210
Step 2.5
Combine the numerators over the common denominator.
5x-2y-2835=0,(x-z)⋅2-(y-4)⋅510=0,y-z3=x+2105x−2y−2835=0,(x−z)⋅2−(y−4)⋅510=0,y−z3=x+210
Step 2.6
Simplify the numerator.
Step 2.6.1
Apply the distributive property.
5x-2y-2835=0,x⋅2-z⋅2-(y-4)⋅510=0,y-z3=x+2105x−2y−2835=0,x⋅2−z⋅2−(y−4)⋅510=0,y−z3=x+210
Step 2.6.2
Move 22 to the left of xx.
5x-2y-2835=0,2⋅x-z⋅2-(y-4)⋅510=0,y-z3=x+2105x−2y−2835=0,2⋅x−z⋅2−(y−4)⋅510=0,y−z3=x+210
Step 2.6.3
Multiply 22 by -1−1.
5x-2y-2835=0,2⋅x-2z-(y-4)⋅510=0,y-z3=x+2105x−2y−2835=0,2⋅x−2z−(y−4)⋅510=0,y−z3=x+210
Step 2.6.4
Apply the distributive property.
5x-2y-2835=0,2x-2z+(-y--4)⋅510=0,y-z3=x+2105x−2y−2835=0,2x−2z+(−y−−4)⋅510=0,y−z3=x+210
Step 2.6.5
Multiply -1−1 by -4−4.
5x-2y-2835=0,2x-2z+(-y+4)⋅510=0,y-z3=x+2105x−2y−2835=0,2x−2z+(−y+4)⋅510=0,y−z3=x+210
Step 2.6.6
Apply the distributive property.
5x-2y-2835=0,2x-2z-y⋅5+4⋅510=0,y-z3=x+2105x−2y−2835=0,2x−2z−y⋅5+4⋅510=0,y−z3=x+210
Step 2.6.7
Multiply 55 by -1−1.
5x-2y-2835=0,2x-2z-5y+4⋅510=0,y-z3=x+2105x−2y−2835=0,2x−2z−5y+4⋅510=0,y−z3=x+210
Step 2.6.8
Multiply 44 by 55.
5x-2y-2835=0,2x-2z-5y+2010=0,y-z3=x+2105x−2y−2835=0,2x−2z−5y+2010=0,y−z3=x+210
5x-2y-2835=0,2x-2z-5y+2010=0,y-z3=x+2105x−2y−2835=0,2x−2z−5y+2010=0,y−z3=x+210
5x-2y-2835=0,2x-2z-5y+2010=0,y-z3=x+210
Step 3
Step 3.1
Subtract x+210 from both sides of the equation.
5x-2y-2835=0,2x-2z-5y+2010=0,y-z3-x+210=0
Step 3.2
To write y-z3 as a fraction with a common denominator, multiply by 1010.
5x-2y-2835=0,2x-2z-5y+2010=0,y-z3⋅1010-x+210=0
Step 3.3
To write -x+210 as a fraction with a common denominator, multiply by 33.
5x-2y-2835=0,2x-2z-5y+2010=0,y-z3⋅1010-x+210⋅33=0
Step 3.4
Write each expression with a common denominator of 30, by multiplying each by an appropriate factor of 1.
Step 3.4.1
Multiply y-z3 by 1010.
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)⋅103⋅10-x+210⋅33=0
Step 3.4.2
Multiply 3 by 10.
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)⋅1030-x+210⋅33=0
Step 3.4.3
Multiply x+210 by 33.
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)⋅1030-(x+2)⋅310⋅3=0
Step 3.4.4
Multiply 10 by 3.
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)⋅1030-(x+2)⋅330=0
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)⋅1030-(x+2)⋅330=0
Step 3.5
Combine the numerators over the common denominator.
5x-2y-2835=0,2x-2z-5y+2010=0,(y-z)⋅10-(x+2)⋅330=0
Step 3.6
Simplify the numerator.
Step 3.6.1
Apply the distributive property.
5x-2y-2835=0,2x-2z-5y+2010=0,y⋅10-z⋅10-(x+2)⋅330=0
Step 3.6.2
Move 10 to the left of y.
5x-2y-2835=0,2x-2z-5y+2010=0,10⋅y-z⋅10-(x+2)⋅330=0
Step 3.6.3
Multiply 10 by -1.
5x-2y-2835=0,2x-2z-5y+2010=0,10⋅y-10z-(x+2)⋅330=0
Step 3.6.4
Apply the distributive property.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z+(-x-1⋅2)⋅330=0
Step 3.6.5
Multiply -1 by 2.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z+(-x-2)⋅330=0
Step 3.6.6
Apply the distributive property.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-x⋅3-2⋅330=0
Step 3.6.7
Multiply 3 by -1.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-3x-2⋅330=0
Step 3.6.8
Multiply -2 by 3.
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-3x-630=0
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-3x-630=0
5x-2y-2835=0,2x-2z-5y+2010=0,10y-10z-3x-630=0
Step 4
Write the system of equations in matrix form.
[135000110000013000]
Step 5
Step 5.1
Multiply each element of R1 by 35 to make the entry at 1,1 a 1.
Step 5.1.1
Multiply each element of R1 by 35 to make the entry at 1,1 a 1.
[35(135)35⋅035⋅035⋅0110000013000]
Step 5.1.2
Simplify R1.
[1000110000013000]
[1000110000013000]
Step 5.2
Perform the row operation R2=R2-110R1 to make the entry at 2,1 a 0.
Step 5.2.1
Perform the row operation R2=R2-110R1 to make the entry at 2,1 a 0.
[1000110-110⋅10-110⋅00-110⋅00-110⋅0013000]
Step 5.2.2
Simplify R2.
[10000000013000]
[10000000013000]
Step 5.3
Swap R3 with R2 to put a nonzero entry at 2,2.
[10000130000000]
Step 5.4
Multiply each element of R2 by 30 to make the entry at 2,2 a 1.
Step 5.4.1
Multiply each element of R2 by 30 to make the entry at 2,2 a 1.
[100030⋅030(130)30⋅030⋅00000]
Step 5.4.2
Simplify R2.
[100001000000]
[100001000000]
[100001000000]
Step 6
Use the result matrix to declare the final solutions to the system of equations.
x=0
y=0
Step 7
The solution is the set of ordered pairs that makes the system true.
(0,0,z)
Step 8
Decompose a solution vector by re-arranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality.
X=[xyz]=[00z]