Enter a problem...
Linear Algebra Examples
[x-15-15-15x-15-15-15x]⎡⎢
⎢
⎢⎣x−15−15−15x−15−15−15x⎤⎥
⎥
⎥⎦
Step 1
Step 1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|x-15-15x|
Step 1.4
Multiply element a11 by its cofactor.
x|x-15-15x|
Step 1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-15-15-15x|
Step 1.6
Multiply element a12 by its cofactor.
15|-15-15-15x|
Step 1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-15x-15-15|
Step 1.8
Multiply element a13 by its cofactor.
-15|-15x-15-15|
Step 1.9
Add the terms together.
x|x-15-15x|+15|-15-15-15x|-15|-15x-15-15|
x|x-15-15x|+15|-15-15-15x|-15|-15x-15-15|
Step 2
Step 2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
x(x⋅x-(-15(-15)))+15|-15-15-15x|-15|-15x-15-15|
Step 2.2
Simplify each term.
Step 2.2.1
Multiply x by x.
x(x2-(-15(-15)))+15|-15-15-15x|-15|-15x-15-15|
Step 2.2.2
Multiply -15(-15).
Step 2.2.2.1
Multiply -1 by -1.
x(x2-(1(15)15))+15|-15-15-15x|-15|-15x-15-15|
Step 2.2.2.2
Multiply 15 by 1.
x(x2-(15⋅15))+15|-15-15-15x|-15|-15x-15-15|
Step 2.2.2.3
Multiply 15 by 15.
x(x2-15⋅5)+15|-15-15-15x|-15|-15x-15-15|
Step 2.2.2.4
Multiply 5 by 5.
x(x2-125)+15|-15-15-15x|-15|-15x-15-15|
x(x2-125)+15|-15-15-15x|-15|-15x-15-15|
x(x2-125)+15|-15-15-15x|-15|-15x-15-15|
x(x2-125)+15|-15-15-15x|-15|-15x-15-15|
Step 3
Step 3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
x(x2-125)+15(-15x-(-15(-15)))-15|-15x-15-15|
Step 3.2
Simplify each term.
Step 3.2.1
Combine x and 15.
x(x2-125)+15(-x5-(-15(-15)))-15|-15x-15-15|
Step 3.2.2
Multiply -15(-15).
Step 3.2.2.1
Multiply -1 by -1.
x(x2-125)+15(-x5-(1(15)15))-15|-15x-15-15|
Step 3.2.2.2
Multiply 15 by 1.
x(x2-125)+15(-x5-(15⋅15))-15|-15x-15-15|
Step 3.2.2.3
Multiply 15 by 15.
x(x2-125)+15(-x5-15⋅5)-15|-15x-15-15|
Step 3.2.2.4
Multiply 5 by 5.
x(x2-125)+15(-x5-125)-15|-15x-15-15|
x(x2-125)+15(-x5-125)-15|-15x-15-15|
x(x2-125)+15(-x5-125)-15|-15x-15-15|
x(x2-125)+15(-x5-125)-15|-15x-15-15|
Step 4
Step 4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
x(x2-125)+15(-x5-125)-15(-15(-15)-(-15x))
Step 4.2
Simplify each term.
Step 4.2.1
Multiply -15(-15).
Step 4.2.1.1
Multiply -1 by -1.
x(x2-125)+15(-x5-125)-15(1(15)15-(-15x))
Step 4.2.1.2
Multiply 15 by 1.
x(x2-125)+15(-x5-125)-15(15⋅15-(-15x))
Step 4.2.1.3
Multiply 15 by 15.
x(x2-125)+15(-x5-125)-15(15⋅5-(-15x))
Step 4.2.1.4
Multiply 5 by 5.
x(x2-125)+15(-x5-125)-15(125-(-15x))
x(x2-125)+15(-x5-125)-15(125-(-15x))
Step 4.2.2
Combine x and 15.
x(x2-125)+15(-x5-125)-15(125--x5)
Step 4.2.3
Multiply --x5.
Step 4.2.3.1
Multiply -1 by -1.
x(x2-125)+15(-x5-125)-15(125+1x5)
Step 4.2.3.2
Multiply x5 by 1.
x(x2-125)+15(-x5-125)-15(125+x5)
x(x2-125)+15(-x5-125)-15(125+x5)
x(x2-125)+15(-x5-125)-15(125+x5)
x(x2-125)+15(-x5-125)-15(125+x5)
Step 5
Step 5.1
Simplify each term.
Step 5.1.1
Apply the distributive property.
x⋅x2+x(-125)+15(-x5-125)-15(125+x5)
Step 5.1.2
Multiply x by x2 by adding the exponents.
Step 5.1.2.1
Multiply x by x2.
Step 5.1.2.1.1
Raise x to the power of 1.
x1x2+x(-125)+15(-x5-125)-15(125+x5)
Step 5.1.2.1.2
Use the power rule aman=am+n to combine exponents.
x1+2+x(-125)+15(-x5-125)-15(125+x5)
x1+2+x(-125)+15(-x5-125)-15(125+x5)
Step 5.1.2.2
Add 1 and 2.
x3+x(-125)+15(-x5-125)-15(125+x5)
x3+x(-125)+15(-x5-125)-15(125+x5)
Step 5.1.3
Combine x and 125.
x3-x25+15(-x5-125)-15(125+x5)
Step 5.1.4
Apply the distributive property.
x3-x25+15(-x5)+15(-125)-15(125+x5)
Step 5.1.5
Multiply 15(-x5).
Step 5.1.5.1
Multiply 15 by x5.
x3-x25-x5⋅5+15(-125)-15(125+x5)
Step 5.1.5.2
Multiply 5 by 5.
x3-x25-x25+15(-125)-15(125+x5)
x3-x25-x25+15(-125)-15(125+x5)
Step 5.1.6
Multiply 15(-125).
Step 5.1.6.1
Multiply 15 by 125.
x3-x25-x25-15⋅25-15(125+x5)
Step 5.1.6.2
Multiply 5 by 25.
x3-x25-x25-1125-15(125+x5)
x3-x25-x25-1125-15(125+x5)
Step 5.1.7
Apply the distributive property.
x3-x25-x25-1125-15⋅125-15⋅x5
Step 5.1.8
Multiply -15⋅125.
Step 5.1.8.1
Multiply 125 by 15.
x3-x25-x25-1125-125⋅5-15⋅x5
Step 5.1.8.2
Multiply 25 by 5.
x3-x25-x25-1125-1125-15⋅x5
x3-x25-x25-1125-1125-15⋅x5
Step 5.1.9
Multiply -15⋅x5.
Step 5.1.9.1
Multiply x5 by 15.
x3-x25-x25-1125-1125-x5⋅5
Step 5.1.9.2
Multiply 5 by 5.
x3-x25-x25-1125-1125-x25
x3-x25-x25-1125-1125-x25
x3-x25-x25-1125-1125-x25
Step 5.2
Combine the numerators over the common denominator.
x3+-x-x-x25+-1-1125
Step 5.3
Subtract x from -x.
x3+-2x-x25+-1-1125
Step 5.4
Subtract x from -2x.
x3+-3x25+-1-1125
Step 5.5
Subtract 1 from -1.
x3+-3x25+-2125
Step 5.6
Simplify each term.
Step 5.6.1
Move the negative in front of the fraction.
x3-3x25+-2125
Step 5.6.2
Move the negative in front of the fraction.
x3-3x25-2125
x3-3x25-2125
x3-3x25-2125